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A Recursive Algorithm for Maximum Likelihood-Based
Identification of Blur from Multiple Observations

A. N. Rajagopalan and Subhasis Chaudhuri

Abstract—A maximum likelihood-based method is proposed for blur
identification from multiple observations of a scene. When the relations
among the blurring functions are known, the estimate of blur obtained
using the proposed method is very good. Since direct computation of the
likelihood function becomes difficult as the number of images increases,
we propose an algorithm to compute the likelihood function recursively.

Index Terms—Blur identification, Gaussian defocus, ML estimator,
multiple observations, recursive computation.

I. INTRODUCTION

Blur identification is a very important step toward restoration,
and in actual practice must be estimated from the degraded image
itself. The earliest work on blur identification concentrated on point
spread functions (psf’s), Fourier transforms of which have zeros on
the unit bicircle [1]. In more recent works, the original image is
modeled as an autoregressive (AR) process and the identification
problem is formulated as a maximum likelihood (ML) estimation
problem [2]–[8]. An overview of the developments in image and
blur identification under the ML framework is given in [7]. Recently,
the recovery of an image frommultiple observations of it has
been receiving much attention. In [9], Katsaggeloset al. suggest an
algorithm that incorporates multiple distorted versions of a signal and
results in a restoration error approaching zero with few iterations. In
[10], Ghiglia develops a scheme for image restoration from multiple,
blurred images based on the constrained least squares approach. Ward
[11] considers restoration from differently blurred versions of an
image in the presence of noise. However, in all these methods the
psf is either exactly or partially known.

In this correspondence, we propose an ML-based blur identification
method that uses multiple, blurred versions of the original image to
get improved estimates of blur. When the relations among the blurring
functions are known, we show that the estimate of blur obtained by
using the proposed method is very good [12]. The improvement is
particularly significant under severe blurring conditions. We select
the problem of blurring due to defocusing [13] as an application to
demonstrate the usefulness of the proposed technique. The degree of
improvement in the estimate of blur depends on the relative blurring
among the images. However, with an increase in the number of
blurred images, the size of the cross-correlation matrix increases and
direct computation of the likelihood function becomes cumbersome.
Further, the computation has to start afresh for each additional
observation of the scene. To tackle this, we propose an elegant
method that computes the likelihood function recursively as more
observations are added.
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Fig. 1. Magnitude of the error in the estimate of�1 for various values of
�2. The continuous and the dotted lines correspond to SNR of 40 and 10
dB, respectively.

II. ML B LUR IDENTIFICATION FROM MULTIPLE IMAGES

We model the discrete original imagef(i; j) by a two-dimensional
(2-D) AR process with causal support and coefficientsa(i; j), driven
by a zero mean homogeneous Gaussian white noise processv(i; j)
with variance�2v . The observed imageg(i; j) is modeled as the
output of a 2-D linear space-invariant system characterized by the psf
h(i; j). The observation noisew(i; j) is assumed to be an additive
zero-mean white Gaussian process with variance�2w. Hence, in the
Fourier domain, we haveF = (I � �A)

�1V andG = �HF +W ,
whereF , G, V , andW are the discrete Fourier transforms (DFT’s)
of the raster-scanned sequencesf(i; j), g(i; j), v(i; j), andw(i; j),
respectively. Matrices�A and �H are diagonal with entries that
correspond to the DFT’s of the sequencesa(i; j) and h(i; j),
respectively.

The following relationships are derived for one-dimensional (1-D)
signals. Extension to the 2-D case is straightforward. GivenM

differently blurred versions of the original image, we have

G
i = �H F +W

i
; i = 1; 2; � � � ; M: (1)

Notationally, the bar inGi represents the process whileGi is
a realization of the process. Noise processesW k and W l are
assumed to be statistically independent fork 6= l. Let GM =

[G1 G2 � � � GM ]T and GM = [G1 G2 � � � GM ]T .
Here, “T ” represents transpose. It is straightforward to show from (1)
thatGM is also jointly Gaussian. Therefore, the probability density
function of GM is given by

p(GM) =
1

(2�)MN=2(det PM )1=2
exp �

1

2
G
H
MP

�1

M GM (2)

where

PM =E[GM G
H
M ]

=

P 1; 1 P 1; 2 � � � P 1;M

P 2; 1 P 2; 2 � � � P 2;M

...
...

...
...

PM; 1 PM; 2 � � � PM;M

: (3)

E is the expectation operator,N is the number of samples, and
P i; j = E[Gi Gj ]. Here, “H” represents the Hermitian. It can be
shown thatP i; j = �2v�H (I ��A)

�1(I ��A)
�H�HH + �2w�i; jI,
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(a) (b)

Fig. 2. Magnitude of the error in the estimate of�1 for various values of�3 and for (a)�2 = 2:0 and (b)�2 = 4:0. The continuous and the dotted
lines correspond to SNR of 40 and 10 dB, respectively.

whereP i; j is a diagonal matrix whosekth entry is given by

P i; j(k; k) =
Hi(k)H

�

j (k)

j1�A(k)j2
�2v + �2w�i; j ; k = 0; 1; � � � ; N � 1:

(4)

Here,Hi(k) andA(k) are the DFT’s ofhi(m) anda(m) while “�”
represents complex conjugate.

Let the unknown parameters be denoted by the vector� =
fa(m); h1(m); � � � ; hM(m); �2w; �

2

vg andhi(m) be the psf corre-
sponding to the blurring in theith observation. The blur identification
problem focuses on estimating the unknown parametershi(m),
i = 1; � � � ; M from the M noisy and blurred observations. The
ML estimation problem of� can now be expressed as

min
�

FM(�) whereFM (�) = log(det PM ) +GH
MP

�1

M GM : (5)

Equation (5) specifies a complicated nonlinear optimization prob-
lem in several variables mainly because of the nonquadratic behavior
of log det PM . To obtain a unique solution, additional constraints
about the unknown parameters need to be incorporated.

III. RECURSIVE COMPUTATION OF THE LIKELIHOOD FUNCTION

To computeFM(�), direct evaluation ofdet PM andP�1M in (5)
would be very cumbersome for increasingM . In this section, we
propose an elegant method that recursively computesFM (�). The
method uses some important results from linear algebra [14].

From (3), the matrixPM can be rewritten in partitioned form as

PM =
PM�1 DM

DH
M PM;M (6)

whereDM = [P 1;M P 2;M � � � PM�1;M ]T . It may be noted that
all P i; js are diagonal, and further,P i; i is real. Therefore

P�1M =
AM BM

BH
M CM

where

CM =(PM;M �DH
MP

�1

M�1
DM)�1

BM = � P�1M�1
DMCM

AM =P�1M�1
+ P�1M�1

DMCMD
H
MP

�1

M�1
: (7)

The determinant ofPM can be rewritten as

det PM =(det PM�1) det(P
M;M �DH

MP
�1

M�1
DM)

= (det PM�1) det(C
�1

M ): (8)

Fig. 3. Magnitude of the error in the estimate of�1 for various values of
�2 for the cameraman image. The continuous and the dotted lines correspond
to SNR of 40 and 10 dB, respectively.

TABLE I
FOCUSING RANGE AND ERROR IN THE

ESTIMATE OF DEPTH FOR THESCENE IN FIG. 6

Using (7) and (8) in (5), we get the important recursive relation

FM (�) =FM�1(�) + log det C�1M

+GH
M�1P

�1

M�1
DMCMD

H
MP

�1

M�1
GM�1

+GH
M�1BMG

M +GM BH
MGM�1 +GM CMG

M :

(9)

SinceP1 = P 1;1 is a diagonal matrix and so isCM (for all M ), no
inversion is required in the proposed recursive formulation.

We now proceed to compute the likelihood function forM = 1; 2
and for the general case ofM images.

A. Computation ofF1(�)

From (5) F1(�) = log det P1 + GH
1 P

�1

1
G1 =

N�1

k=0
log[P 1; 1(k; k)] + [jG1(k)j2]=[P 1; 1(k; k)]. The exact

expression forP 1; 1(k; k) that relates to the parameter� is given
by (4). The above expression is exactly the same as the one derived
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Fig. 4. Magnitude of the error in the estimate of�1 for different values of�3 for the cameraman image and for (a)�2 = 1:5 and (b)�2 = 4:5. The
continuous and the dotted lines correspond to SNR of 40 and 10 dB, respectively.

in [7] for the case of a single image. Thus, our formulation provides
a general framework in whichM = 1 is a special case.

B. Computation ofF2(�)

Using (9) and the fact that the matrices involved in the computation
are all diagonal, it can be shown that

F2(�) =F1(�) +

N�1

k=0

log P 2; 2(k; k)�
jP 2; 1(k; k)j2

P 1; 1(k; k)

+ C2(k; k) G
1(k)

P 2; 1(k; k)

P 1; 1(k; k)
�G2(k)

2

where

C2(k; k) =
1

P 2; 2(k; k)�
jP 2; 1(k; k)j2

P 1; 1(k; k)

:

C. Computation ofFM(�)

One may continue proceeding as in Section III-B to obtain the
general terms in the expression forFM (�). However, the expression
becomes unwieldy beyondM = 2. Here we provide the steps
involved in computing the likelihood function recursively.

Step 1) Initialize F1(�) = log det P1 + GH
1 P

�1

1
G1, where

P1 = P 1; 1 is given by (4). MinimizeF1(�) to obtain
the estimate� = �1 and setM = 2.

Step 2) ObtainCM = (PM;M �DH
MP�1M�1DM)�1.

Step 3) Get BM = �P�1M�1DMCM .
Step 4) Use FFT to obtainGM from theM th observation.
Step 5) Compute FM (�) = FM�1(�) + log det C�1M +

GH
M�1P

�1

M�1DMCMDH
MP�1M�1GM�1 +

GH
M�1BMGM +GM BH

MGM�1 +GM CMGM .
Step 6) Minimize FM(�) using�M�1 as the initial estimate and

obtain �M .
Step 7) M  M + 1 and go to Step 2.

IV. A SPECIAL APPLICATION

Point spread functions of degradations encountered in practice may
have a support of considerable extent. Without additional knowledge
about the relations between the psf coefficients, this requires the
estimation of a large number of independent parameters. Low-order
parametric blur models when incorporated into the identification
scheme make the identification algorithm applicable to more realistic
blurs and improve the identification results. An additional advantage
of these parametric models is that they can be initialized more easily
than the nonparametric ones. Even after substituting the selected
parametric blur model, the nonlinear optimization problem involving

(a) (b)

(c) (d)

Fig. 5. (a) Original cameraman. (b)–(d) Restored images corresponding to
�̂1 = 1:7; 2:1; and2:6; respectively, using the Wiener filter. The SNR was
40 dB.

(9) would rarely have an explicit solution. In general, it must be
solved by numerical methods, which can now be done efficiently
because of the low dimensionality of the problem.

A priori information about the psf is available in many cases of
interest. For example, in the scheme on recovery of depth from
defocused images, the camera blur is usually modeled as a Gauss-
ian function hm(i; j) = (1=2��2m) exp[�(i2 + j2)=2�2m], m =

1; 2; � � � ; M . The blurred image of the scene is given by the
convolution of the original focused image and the psf of the system
corresponding to that depth. The blur parameter�m depends on
the lens parameters and the depthD and is given by�m =

�rmvm(1=Fl � 1=vm � 1=D) whereFl , vm, and rm are the
focal length, the image plane-to-lens distance, and the lens aperture,
respectively, for themth camera setting. For different lens settings,
the blur parameters corresponding to different blurred images are
related [15] by�1 = �i�i + �i, i = 2; � � � ; M , where �i =

r1v1=rivi and�i = r1v1(1=Fl � 1=v1� 1=Fl + 1=vi) are known
constants. The relative blurring between�1 and �i is governed by
�i and�i. Given the relation among the blurring functions and the
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Fig. 6. Some of the defocused images in the experimental setup. Images correspond to focusing range of (a) 140 cm, (b) 180 cm, and (c) 300 cm.

corresponding defocused and noisy images, the problem boils down
to estimating�1.

V. EXPERIMENTAL RESULTS

The blurring function was chosen to be Gaussian in our experimen-
tal studies. GivenM number of observations,FM(�) was minimized
with respect to the unknown parameter set� using the steepest descent
method. The noise was assumed to be zero-mean, white Gaussian and
SNR’s of 40 and 10 dB were considered. In the first set of simulations,
an arbitrary 1-D signal of length 64 samples was blurred severely by
a Gaussian function of standard deviation�1 = 3:0. The order of
the AR model for the original signal was chosen to be two. The
initial value for the estimate of�1 was taken as 1.0. The estimates
of �1 obtained by minimizingF1(�) were 1.46 and 1.16 for SNR
of 40 and 10 dB, respectively. About 50 iterations were required
for convergence. The estimates obtained by using a single image
turned out to be quite poor, as expected. We next generated a second
blurred signal for different values of�2. The estimate of�1 (denoted
by �̂1) was now obtained by minimizingF2(�) and the magnitude
of the error, defined asj�1 � �̂1j, is plotted in Fig. 1. About 40
iterations were now required for convergence. We observe that there
is a substantial improvement in the estimate of�1 when the second
blurred signal is relatively either more focused (i.e.,�2 � �1) or
more blurred (i.e.,�2 � �1) compared to the first signal. This can
also be proved by showing the corresponding Cram´er–Rao bound
to be a decreasing function in terms of relative blurring [16]. The
estimate of�1 is more immune to noise as the relative blurring
increases. Similar observations were also made by Ghiglia [10] in
the context of image restoration from multiple observations. A third
blurred signal was next generated and the errors in the estimate
of �1 are plotted in Fig. 2(a) and (b). The algorithm converged
in 25 iterations itself. From these plots, we again notice that the
improvement in the estimate of�1 (and its immunity to noise) are
quite significant when the third signal is relatively more focused or
blurred than the first two signals. In the second set of simulation
results, the MIT cameraman image was severely blurred by a
2-D Gaussian blur with�1 = 3:0. The order of the AR model was
chosen to be two. The initial estimate of�1 was taken as 1.0. The
ML estimate of�1 obtained by using only this blurred image was
poor, and was 1.42 and 1.14 for SNR of 40 and 10 dB, respectively.
About 50 iterations were needed for convergence. Next, we generated
a second blurred image and the errors in the ML estimates of�1

corresponding to different values of�2 are plotted in Fig. 3. The
algorithm now converged in 40 iterations. We again note that the
estimate of�1 improves (and so does its immunity to noise) when�2

is either small or large as compared to�1. Similar observations were

noted when a third blurred image was used [Fig. 4(a) and (b)]. Only
25 iterations were now needed for convergence. The original and the
Wiener-filter restored images corresponding to the estimates of�1

obtained with one, two, and three observations are shown in Fig. 5.
It is clear that an improved estimate of�1 results in a significant
improvement in the restored image.

Finally, for testing the performance of the proposed method on real
blurs, a scene was constructed using a planar object whose farthest
point was at a distance of 100 cm, while the nearest point was about
80 cm from the camera (Fig. 6). The depthD corresponding to the
nearest end of the object was estimated using a local window. From
Table I, we observe that the estimate of the depth improves as more
observations are used. The estimate of the depth is quite good when
the successive observation is better focused than the previous ones.
The above procedure can be continued by incorporating even more
number of observations to improve the estimate of depth.

VI. CONCLUSIONS

In this paper, an ML-based blur identification method that uses
multiple blurred versions of the original image has been proposed.
We have shown that the method gives significant improvement in the
estimate of blur for the class of Gaussian blurs, more so when blurring
is severe. We have also proposed a scheme to find the likelihood
function recursively because direct computation becomes difficult
with increasing number of images. The degree of improvement in the
estimate of the blur is better as the relative blurring increases. Also,
the estimate of blur becomes more resistant to noise. The proposed
method can be used in many practical computer vision applications
like depth from defocus and electron microscopy. We are currently
working on extending the performance analysis of the method to
other classes of blur.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their useful crit-
icism and suggestions.

REFERENCES

[1] H. C. Andrews and B. R. Hunt,Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, 1977.

[2] A. M. Tekalp, H. Kaufman, and J. W. Woods, “Identification of image
and blur parameters for the restoration of noncausal blurs,”IEEE Trans.
Acoust., Speech, Signal Processing,vol. ASSP-34, pp. 963–972, Aug.
1986.

[3] R. L. Lagendijk, A. K. Katsaggelos, and J. Biemond, “Iterative identi-
fication and restoration of images,” inProc. IEEE Int. Conf. Acoustics,
Speech, Signal Processing,New York, 1988, pp. 992–995.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 7, JULY 1998 1079

[4] K. T. Lay and A. K. Katsaggelos, “Image identification and restoration
based on the expectation-maximization algorithm,”Opt. Eng.,vol. 29,
pp. 436–445, May 1990.

[5] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Identification and
restoration of noisy blurred images using the expectation-maximization
algorithm,” IEEE Trans. Acoust., Speech, Signal Processing,vol. 38,
pp. 1180–1191, July 1990.

[6] , “Hierarchial blur identification,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing,1990, pp. 1889–1892.

[7] R. L. Lagendijk, A. M. Tekalp, and J. Biemond, “Maximum likelihood
image and blur identification: A unifying approach,”Opt. Eng.,vol. 29,
pp. 422–435, May 1990.

[8] J. Kim and J. W. Woods, “Image identification and restoration in the
sub-band domain,”IEEE Trans. Image Processing,vol. 3, pp. 312–314,
May 1994.

[9] A. K. Katsaggelos and R. W. Schafer, “Iterative deconvolution using
several different distorted versions of an unknown signal,” inProc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing,Boston, MA: 1983, pp.
659–662.

[10] D. C. Ghiglia, “Space-invariant deblurring givenN independently
blurred images of a common object,”J. Opt. Soc. Amer. A,vol. 1, pp.
398–402, Apr. 1984.

[11] R. K. Ward, “Restoration of differently blurred versions of an image
with measurement errors in the PSF’s,”IEEE Trans. Image Processing,
vol. 2, pp. 369–381, July 1993.

[12] A. N. Rajagopalan and S. Chaudhuri, “Maximum likelihood estima-
tion of blur from multiple observations,” inProc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing,Munich, Germany, Apr. 1997,
pp. 2577–2580.

[13] M. Subbarao, “Efficient depth recovery through inverse optics,” in
Machine Vision for Inspection and Measurement,H. Freeman, Ed. New
York: Academic, 1989.

[14] F. A. Graybill,An Introduction to Linear Statistical Models.New York:
McGraw-Hill, 1961, vol. 1.

[15] A. N. Rajagopalan and S. Chaudhuri, “Space-variant approaches to the
recovery of depth from defocused images,”Computer Vision and Image
Understanding,to be published.

[16] , “Optimal selection of camera parameters for recovery of depth
from defocused images,” inProc. IEEE Int. Conf. Computer Vision and
Pattern Recognition,U.S. Virgin Islands, June 1997.

Region Growing: A New Approach

S. A. Hojjatoleslami and J. Kittler

Abstract—A new region growing method for finding the boundaries
of blobs is presented. A unique feature of the method is that at each
step, at most one pixel exhibits the required properties to join the region.
The method uses two novel discontinuity measures,average contrastand
peripheral contrast, to control the growing process.

I. INTRODUCTION

The segmentation of regions is an important first step for a variety
of image analysis and visualization tasks. There is a wide range of
image segmentation techniques in the literature, some considered
general purpose and some designed for a specific class of images.
Conventional segmentation techniques for monochromatic images
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can be categorized into two distinct approaches [3]. One is region
based, which relies on the homogeneity of spatially localized features,
whereas the other is based on boundary finding, using discontinuity
measures. The two methods exploit two different definitions of a
region which should ideally yield identical results. Homogeneity is
the characteristic of a region and nonhomogeneity or discontinuity
is the characteristic of the boundary of a region. Based on one or
both of these properties, diverse approaches to image segmentation
exhibiting different characteristics have been suggested [1], [2], [4],
[8]–[10], [12], [13].

We present here a new idea for region growing by pixel aggrega-
tion, which uses new similarity and discontinuity measures. A unique
feature of the proposed approach is that in each step at most one
candidate pixel exhibits the required properties to join the region. This
makes the direction of the growing process more predictable. The
procedure offers a framework in which any suitable measurement can
be applied to define a required characteristic of the segmented region.
We use two discontinuity measurements calledaverage contrastand
peripheral contrastto control the growing process. Local maxima
of these two measurements identify two nested regions, called the
average contrastand theperipheral contrastregions. The method
first finds the average contrast boundary of a region, then a reverse
test is applied to produce the peripheral contrast boundary.

Like existing procedures, the method proposed in this paper is
not universal, but it does appear to have a fairly wide application
potential, especially in medical image analysis, where the areas
corresponding to a tissue of interest appear as bright/dark objects
relative to the surrounding tissues.

The concept of the method is presented in the next two sections.
The similarity measure used by the method is presented in Section II.
Section III introduces the two different discontinuity measures,pe-
ripheral contrastandaverage contrast, and illustrates their behavior
on a Gaussian shape image. The capability of our method is then
demonstrated on a set of real images in Section IV, followed by a
summary and conclusion in Section V.

II. GROWING PROCESS

The concept of our method, like that of other region growing
methods by pixel aggregation, is to start with a point that meets
a detection criterion and to grow the point in all directions to extend
the region.

Let us assume that the process starts from an arbitrary pixel. The
pixel is labeled as a region that then grows based on a similarity
measure. In our approach, a boundary pixel is joined to the current
region provided it has the highest grey level among the neighbors of
the region. This induces a directional growing such that the pixels of
high grey level will be absorbed first. When all the high grey level
pixels in the region are absorbed, the process continues by absorbing
the boundary pixels with monotonically lower and lower grey levels.
When several pixels with the same grey level jointly become the
candidates to join the region, the first-come first-served strategy is
used to select one of them. This makes the region more compact,
particularly in situations where the grey levels of the background or
the region pixels are very homogeneous.

In order to monitor the pixels joining the region, a grey-level
mapping is generated. The mapping is very similar to the mapping
of data points from a high-dimensional feature space onto a sequence
which is used in the mode separating (MODESP) procedure for
cluster analysis proposed by Kittler [7]. The mapping for a small
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