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Abstract—A maximum likelihood-based method is proposed for blur
identification from multiple observations of a scene. When the relations
among the blurring functions are known, the estimate of blur obtained
using the proposed method is very good. Since direct computation of the 0.6 E— : e Lt
likelihood function becomes difficult as the number of images increases, 222 24 26 28 3 32 34 36 38 4
we propose an algorithm to compute the likelihood function recursively.

&

Index Terms—Blur identification, Gaussian defocus, ML estimator,
multiple observations, recursive computation. Fig. 1. Magnitude of the error in the estimate of for various values of
o2. The continuous and the dotted lines correspond to SNR of 40 and 10
dB, respectively.

|. INTRODUCTION

Blur identification is a very important step toward restoration, II. ML B LUR IDENTIFICATION FROM MULTIPLE IMAGES
and in actual practice must be estimated from the degraded imag

itself. The earliest work on blur identification concentrated on poié ?Ne model the discrete original imag:, 5) by a two-dimensional

spread functions (psf's), Fourier transforms of which have zeros D) AR process with causal support ?“d coe_ffluen_{us ) drllvejn

the unit bicircle [1]. In more recent works, the original image i Y a zero mea’; homogeneous (3lau55|ar) vythe noise process)

modeled as an autoregressive (AR) process and the identificatYy)'ﬁh varlance o . The obser_ved _|magg(z, j) is model_ed as the

problem is formulated as a maximum likelihood (ML) estimatio uf[pgt of a2-D I|near_space;|nvqr|§n§ system characterized by_the psf
(7, j). The observation noise(i, j) is assumed to be an additive

problem [2]-{8]. An overview of the developments in image anzero-mean white Gaussian process with variange Hence, in the
blur identification under the ML framework is given in [7]. Recently,Fourier domain, we havé — (I — )7 andG — AHF'+ "

t:)heeenrerzg\é?vri{l gOLSEh I;T:{ae gniiof;?l?anl;ét]lf)fa?sgsgeé;:;glr_‘ Zugfg ;;th:: whereF’, G, V, andW are the Qisgrete .Fo.urier' trgnsforms '(D.FT’S)
algorithm that incorporates multiple distorted versions of a signal af the rgster-scanr_led sequenges j), g(z’.J)’ vli, J).’ andw(_z, i)
results in a restoration error approaching zero with few iterations. rltﬁspectlvely. Matnces\A’ and A, are dlagongl Wlth entrlgs ’that
[10], Ghiglia develops a scheme for image restoration from multiplgorresp_ond to the DFT's of the sequences. j) and h(i, j),
blurred images based on the constrained least squares approach. \Ws ctlvely._ . . . . .

[11] considers restoration from differently blurred versions of an. e following relationships are derived for one-dimensional (1-D)

image in the presence of noise. However, in all these methods mﬁgfé?tl E)t()tlﬁ?rselgnvet?si:)r;]i g;?hecisr‘is ilnsalsitr;illgzﬁsxig\./eelwn
psf is either exactly or partially known. y 9 g€,

In this correspondence, we propose an ML-based blur identification G = Ay F+ T i=1.9 . M. @
method that uses multiple, blurred versions of the original image to ‘ i o ’

get improved estimates of blur. When the relations among the b|UrriNH)tationaIIy, the bar inG' represents the process whig is
functions are known, we show that the estimate of blur obtained By realization of the process. Noise proces$®é and W' are

using the proposed method is very good [12]. The improvementdgsumed to be statistically independent for# 1. Let Gy =
particularly significant under severe blurring conditions. We selegtn”™ " .. @MT]T and Gy = [GlT "o GMT]T_
the problem of blurring due to defocusing [13] as an application gire, “T” represents transpose. It is straightforward to show from (1)

demonstrate the usefulness of the proposed technique. The degreg §f  is also jointly Gaussian. Therefore, the probability density
improvement in the estimate of blur depends on the relative blurriggy, -iion of Gus is given by

among the images. However, with an increase in the number of
blurred images, the size of the cross-correlation matrix increases and G = 1
direct computation of the likelihood function becomes cumbersome.p( ) = (2m)MN/2(det Pyy)l/?
Further, the computation has to start afresh for each additional
observation of the scene. To tackle this, we propose an elegﬁflﬂere
method that computes the likelihood function recursively as more

observations are added.
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Fig. 2. Magnitude of the error in the estimate ®f for various values ofr3 and for (a)o2 = 2.0 and (b)o2 = 4.0. The continuous and the dotted

lines correspond to SNR of 40 and 10 dB, respectively.

where P*7 is a diagonal matrix whoskth entry is given by

1.9 T T g S T
i H;(k)H (k) . : . 18 > T 4
Pk, k) = %ai +026, k=0,1,---, N—1. ok . S
(4)

Here,H;(k) and A(k) are the DFT'’s oft;(m) anda(m) while “x”
represents complex conjugate.

Let the unknown parameters be denoted by the veétor=
{a(m), hi(m), ---, har(m), a2, o2} andh,;(m) be the psf corre-
sponding to the blurring in thagh observation. The blur identification
problem focuses on estimating the unknown parametefsn),

i =1,---, M from the M noisy and blurred observations. The
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ML estimation problem of can now be expressed as

Fig. 3. Magnitude of the error in the estimate ®f for various values of
o9 for the cameraman image. The continuous and the dotted lines correspond

) to SNR of 40 and 10 dB, respectively.
win Fus(6) where Fus (6) = log(det Par) + G/ P Gar. (5) pectively

Equation (5) specifies a complicated nonlinear optimization prob- TABLE |
lem in several variables mainly because of the nonquadratic behavior
of log det Pys. TO obtain a unique solution, additional constraints

FocusING RANGE AND ERROR IN THE
ESTIMATE OF DEPTH FOR THE SCENE IN FIG. 6

about the unknown parameters need to be incorporated. First | Second | Third | % Error
image | image | image
- - 13.10
I1l.  RECURSIVE COMPUTATION OF THE LIKELIHOOD FUNCTION

180 em - 9.35
To computeFu (8), direct evaluation oflet Py, and Py,' in (5) 140 em | 180 em | 300 em 4.70
would be very cumbersome for increasidg. In this section, we 110 em - 8.50
propose an elegant method that recursively compiite$6). The 110 e | 90 em 2.50

method uses some important results from linear algebra [14].
From (3), the matrixP,; can be rewritten in partitioned form as

D
pM. M

Py
H
DA/I

Py = { ®)

where Dy, = [PV P2 ... pM=LMIT it may be noted that
all P*’s are diagonal, and furtheR" * is real. Therefore

_ |:AJ\/I BAI:|

—1

P
M il

By Cwum

where

Cu = (PM, M Dli\g PﬁllDM)_1

By = — Pi' 1 DuCu
Ay =Pyt + Pt DuCu Dﬁpﬁl_l- (7
The determinant of?,; can be rewritten as
det Py = (det Pyr_y) det(PY" — D}, Py,' D)
= (det Pry—1) det(C';,l). (8)

Using (7) and (8) in (5), we get the important recursive relation

Fu(8) =Fu_1(0) + log det C3'
+ Gh Pyt Dy Cru DY P Gy

y ArH A H
+ G 1 BuGY + GV B G + GV G
9

SinceP, = P! is a diagonal matrix and so 8, (for all ), no
inversion is required in the proposed recursive formulation.

We now proceed to compute the likelihood function fdr= 1, 2
and for the general case aff images.

A. Computation off’ (9)

From (5) Fi(f) log det P, + G¥ PGy
Z;?;Ol log[PV Y (k, k)] + [|G*(R)?]/[PY*(k, k)]. The exact
expression forP" ' (k, k) that relates to the parametéris given
by (4). The above expression is exactly the same as the one derived
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Fig. 4. Magnitude of the error in the estimate ®f for different values ofo3 for the cameraman image and for @ = 1.5 and (b)o> = 4.5. The
continuous and the dotted lines correspond to SNR of 40 and 10 dB, respectively.

in [7] for the case of a single image. Thus, our formulation provides
a general framework in which/ = 1 is a special case.

B. Computation off(6)

Using (9) and the fact that the matrices involved in the computation
are all diagonal, it can be shown that

N—1

. |P> ' (k, k)|
Fa(8) = Fi(6) + ; log [P B = iy
+C (7{ L“) Cl(k) M — Cz(k) :
2k, B)| G (B) s gy = GO (b)
where
Co(k, k) = -
/2( b ‘)_ P2 k)_ |P2"1(7’7-, k)|2 .

C. Computation off;(#)

One may continue proceeding as in Section IlI-B to obtain the
general terms in the expression B/ (6). However, the expression
becomes unwieldy beyond/ = 2. Here we provide the steps
involved in computing the likelihood function recursively.

Step 1) Initialize Fi(f) = log det P, + G PGy, where () (d)
L1 . .
b= P is given by (4). M'n'm'zeF1 (¢) to obtain Fig. 5. (a) Original cameraman. (b)—(d) Restored images corresponding to
the estimate¢y = 4, and setM = 2. &1 = 1.7,2.1, and 2.6, respectively, using the Wiener filter. The SNR was
Step 2) ObtainCyy = (PM — DE P Dyt 40 dB.

Step 3) Get By = —P;;' ;DuiClu.

. A/]' .
Step 4) Use FFT to obtair™ from the Mth observation. (9) would rarely have an explicit solution. In general, it must be

_ , —1
Step 5) C,%mpUtiFM (0) .y F“_ﬁ_l(f)) + log det Cof 4+ oived by numerical methods, which can now be done efficiently
Gy 1Py DuCuDy Py G T b f the low di ionality of th bl
p Mt i " ecause of the low dimensionality of the problem.
GM_—l_BMG +G ] MGa—1 + T oMb A priori information about the psf is available in many cases of
Step 6) Minimize Fi;(6) usingf. -1 as the initial estimate and jyterest. For example, in the scheme on recovery of depth from
obtain f;. defocused images, the camera blur is usually modeled as a Gauss-

Step 7) M — M +1 and go to Step 2. ian function h,,, (i, j) = (1/2702,) exp[—(i® + j*)/202], m =
1,2,---, M. The blurred image of the scene is given by the
IV. A SPECIAL APPLICATION convolution of the original focused image and the psf of the system

Point spread functions of degradations encountered in practice n§@jresponding to that depth. The blur parameter depends on
have a support of considerable extent. Without additional knowledg lens parameters and the depth and is given bys,, =
about the relations between the psf coefficients, this requires #¥envm(1/Fi,, — 1/vm — 1/D) where F,, vm, andr,, are the
estimation of a large number of independent parameters. Low-ordiegal length, the image plane-to-lens distance, and the lens aperture,
parametric blur models when incorporated into the identificatioigspectively, for thenth camera setting. For different lens settings,
scheme make the identification algorithm applicable to more realistie blur parameters corresponding to different blurred images are
blurs and improve the identification results. An additional advantagelated [15] bys: = a0, + 38i, i = 2, .-+, M, wherea; =
of these parametric models is that they can be initialized more easily: /riv: and3; = r1v1(1/Fiy — 1/v1 — 1/ Fi, + 1/v;) are known
than the nonparametric ones. Even after substituting the selectedstants. The relative blurring between and o; is governed by
parametric blur model, the nonlinear optimization problem involving; and 3;. Given the relation among the blurring functions and the
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(b) (€]
Fig. 6. Some of the defocused images in the experimental setup. Images correspond to focusing range of (a) 140 cm, (b) 180 cm, and (c) 300 cm.

corresponding defocused and noisy images, the problem boils domated when a third blurred image was used [Fig. 4(a) and (b)]. Only
to estimatingo, . 25 iterations were now needed for convergence. The original and the
Wiener-filter restored images corresponding to the estimates, of
obtained with one, two, and three observations are shown in Fig. 5.
] ] o . It is clear that an improved estimate of results in a significant
The blurring function was chosen to be Gaussian in our eXpe”m‘?Fﬁprovement in the restored image.

tal studies. Givenl/ number of observationg;y/(#) was minimized  gina)ly for testing the performance of the proposed method on real
with respect to the unknown parameteréesing the steepest descentyy s 5 scene was constructed using a planar object whose farthest
method. The noise was assumed to be zero-mean, white Gaussiangfith \vas at a distance of 100 cm, while the nearest point was about
SNR's of 40 and 10 dB were considered. In the first set of simulationsy cm from the camera (Fig. 6). The depfthcorresponding to the

an arbitrary 1-D signal of length 64 samples was blurred severely Ry, rest end of the object was estimated using a local window. From
a Gaussian function of standard deviatien = 3.0. The order of T4pje | e observe that the estimate of the depth improves as more
the AR model for the original signal was chosen to be two. Th&,seryations are used. The estimate of the depth is quite good when
initial value for the estimate of; was taken as 1.0. The estimategne gyccessive observation is better focused than the previous ones.
of o1 obtained by minimizingF’ (¢) were 1.46 and 1.16 for SNR e gpove procedure can be continued by incorporating even more

of 40 and 10 dB, respectively. About 50 iterations were require, nber of observations to improve the estimate of depth.
for convergence. The estimates obtained by using a single image

turned out to be quite poor, as expected. We next generated a second
blurred signal for different values of,. The estimate of; (denoted

by 1) was now obtained by minimizing:(#) and the magnitude In this paper, an ML-based blur identification method that uses
of the error, defined a$r; — 41|, is plotted in Fig. 1. About 40 multiple blurred versions of the original image has been proposed.
iterations were now required for convergence. We observe that th&¥ve have shown that the method gives significant improvement in the
is a substantial improvement in the estimaterofwhen the second estimate of blur for the class of Gaussian blurs, more so when blurring
blurred signal is relatively either more focused (i@:, < o1) or is severe. We have also proposed a scheme to find the likelihood
more blurred (i.e.p» > 1) compared to the first signal. This canfunction recursively because direct computation becomes difficult
also be proved by showing the corresponding GrasRao bound Wwith increasing number of images. The degree of improvement in the
to be a decreasing function in terms of relative blurring [16]. Thestimate of the blur is better as the relative blurring increases. Also,
estimate ofs; is more immune to noise as the relative blurringhe estimate of blur becomes more resistant to noise. The proposed
increases. Similar observations were also made by Ghiglia [10] finethod can be used in many practical computer vision applications
the context of image restoration from multiple observations. A thirike depth from defocus and electron microscopy. We are currently
blurred signal was next generated and the errors in the estimaterking on extending the performance analysis of the method to
of o1 are plotted in Fig. 2(a) and (b). The algorithm convergedther classes of blur.

in 25 iterations itself. From these plots, we again notice that the

improvement in the estimate of, (and its immunity to noise) are ACKNOWLEDGMENT
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Il. GROWING PROCESS

Region Growing: A New Approach The concept of our method, like that of other region growing

S. A. Hojjatoleslami and J. Kittler methods by pixel aggregation, is to start with a point that meets
a detection criterion and to grow the point in all directions to extend
the region.

Abstract—A new region growing method for finding the boundaries Let us assume that the process starts from an arbitrary pixel. The
of blobs is presented. A unique feature of the method is that at each pixel is labeled as a region that then grows based on a similarity
step, at most one pixel exhibits the required properties to join the region. measure. In our approach, a boundary pixel is joined to the current
The method uses two novel discontinuity measuregverage contrasand . ided it h h h h | | h iahb f
peripheral contrast to control the growing process. region provided it has the highest grey level among the neighbors o

the region. This induces a directional growing such that the pixels of
high grey level will be absorbed first. When all the high grey level
) ) i ) ] _ pixels in the region are absorbed, the process continues by absorbing

The segmentation of regions is an important first step for a vari#ye houndary pixels with monotonically lower and lower grey levels.
of image analysis and visualization tasks. There is a wide range\ghen several pixels with the same grey level jointly become the
image segmentation techniques in the literature, some consideggddidates to join the region, the first-come first-served strategy is
general purpose and some designed for a specific class of imagRgd to select one of them. This makes the region more compact,
Conventional segmentation techniques for monochromatic imaggsticularly in situations where the grey levels of the background or

Manuscript received November 5, 1995; revised October 27, 1997. THee region pixels are very homogeneous.
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