EE5121: Convex Optimisation

January – May 2015

This is a post-graduate course, aimed at giving a rigorous introduction to optimisation theory and algorithms.

Instructor: Krishna Jagannathan, Assistant Professor

TAs: Sreelakshmi PM <ee13s015@ee.iitm.ac.in>; Geetha C <ee13s041@ee.iitm.ac.in>; Arjun Bhagoji <arjunbhagoji@gmail.com>; Jainam Doshi <ee10b058@ee.iitm.ac.in>;

Slot: D

Location: ESB 350

Course Moodle

Pre-requisites: A good foundation in linear algebra and real-analysis over Euclidean spaces

References:

1.     Ben-Tal and Nemirovski, Lectures on Modern Convex Optimization, available here

2.     Boyd and Vandenberghe, Convex Optimization, available here.

 

Course Contents:

Convex Analysis

o   Convex sets, cones, inner and outer descriptions

o   Topological properties

o   Polyhedral sets and representations

o   Some main theorems (Caratheodory, Krein-Milman...)

o   Separating and Supporting Hyperplanes

o   Convex functions, Jensen's inequality

o   Gradient inequality

o   Maxima and minima of convex functions

o   Sub-gradients

 

Linear Programming

o   Structural properties, theorem on alternative

o   LP Duality

o   Some applications in classification (machine learning), compressed sensing, network flows...

 

The Art of Posing Convex Programs:

o   Conic programs, geometric programs (GPs), semi-definite programs (SDPs)

 

Convex Programming:

o   Convex theorem on alternative

o   Lagrangian, Duality

o   Optimality conditions (KKT Conditions, saddle points)

 

Basic Algorithms:

o   Gradient descent

o   Sub-gradient, conjugate-gradient

o   Newton's method, quasi-Newton methods