
Why is Copper Red?
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I mentioned in class that the colour of metals has to do with the frequency depen-
dance of their reflection constant. Let us work this out.

We start with a metal, and hence a conductivityσ. We assume that the material
is homogeneous and there is no magnetic field present (else additional effects will
appear).

Maxwell’s Equations now become

∇×
(

∇×~E
)

=− jωµ~J+ω2µε~E

We are discussing the response to very high frequency waves (∼ 1014Hz) and assume
that only the electrons can respond at this frequency. The electron momentum equation
is given by

mn( jω~v)+mn~v·∇~v = qn~E−mnν~v

Keeping terms to lowest order (since the wave fields are assumed to be weak compared
to the binding fields) the only terms that survive are those that involve~v and~E both of
which are first order. So their coefficients are kept to zeroth order, and we get

mn0~v( jω+ν) = qn0~E

Thus, we have an equation that connects the current to the applied field:

~J = qn0~v =
n0q2

m

~E
jω+ν

The wave equation now becomes, assuming transverse waves

−∇2~E = − jωµ
n0q2

m

~E
jω+ν

+ω2µε~E

= ω2µε
(

1− n0q2

mε
1

ω(ω− jν)

)
~E

In these metals, the collisionality is low (which is why they are excellent conductors).
So let us look at the limit of zeroν. We obtain

k2~E =
ω2

c2

(
1−

ω2
p

ω2

)
~E

whereω2
p = n0q2

/
mε is the “plasma frequency” of the conduction electrons in the

metal. As long as this equation yieldsk2 > 0, there will be atleast some incident angles
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at which transmission occurs. Ifk2 < 0, i.e., if the term in brackets is negative, then the
wave cannot propagate in the metal and all of the energy must reflect.

Clearly there is a cutoff frequency above which propagation is possible. That fre-
quency isω = ωP. For copper this frequency is near the red portion of the spectrum.
For gold, this frequency is near yellow, while for silver, this frequency is into the blue
region. This is why these three metals are the colour they are.

What will the reflection coefficient be? The impedence of the medium is given by
E
/

H. And Faraday’s Law has not changed its form. So

E
H

=
µω
k

= µ
c

1−ω2
p

/
ω2

= η1
1

1−ω2
p

/
ω2

= η2

So,

R=
η1−η2

η1 +η2
=

1−1/
(
1−ω2

p

/
ω2
)

1+1/
(
1−ω2

p

/
ω2
) =−

ω2
p

/
ω2

2−ω2
p

/
ω2

If we look into the internet, http://www.philiplaven.com/p19.html tells us that the three
primary colours on a display are given by

Red Green Blue
650 nm 510 nm 435 nm

Here is what Scilab gives if I use the above RGB frequencies and adjust the the
plasma frequency:

First I define a function that takes a cut-off wavelengthλ0 and uses the above wave-
lengths to compute the intensities of R, G and B. The only thing to take care of is that
whenω2 < ω2

p the reflection coefficient remains 100%.

2a 〈* 2a〉≡
function []=metal(lambda0)

l=[650,510,435];
alpha=l.^2/lambda0^2;
alpha(find(alpha>1))=1;
c=alpha ./(2-alpha);

We add this colour to the palette and select that as the current foreground colour.

2b 〈* 2a〉+≡
c0=addcolor(c);
xset("color",c0);

endfunction

Now just call this function with different cutoff wavelengths and see what colour is
obtained.

2c 〈* 2a〉+≡
plot2d(0,0,rect=[0 0 1 1],axesflag=0);
metal(520);
xfarc(0.1,.7,.4,.4,0,360*64);
xset("font size",4)
xstring(.2,.5,"520 nm");
metal(810);
xfarc(0.6,.7,.4,.4,0,360*64);
xset("font size",4)
xstring(.7,.5,"810 nm");
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520 nm 810 nm

The problem of getting a good match lies in the fact that the primary colours on
the display are themselves not pure, and our eyes do not see colours quite as a display
screen shows them. So the colour of gold, for example is a combination of a large
number of nearly similar display colours. A fixed colour can’t reproduce this colour.
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