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Nonlinear Techniques for the Joint
Estimation of Cochannel Signals
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Abstract—Cochannel interference occurs when two or more where one or more secondary signals from nearby cells can
signals overlap in frequency and are present concurrently. Unlike interfere with the desired (primary) signal [2]. In addition

in spread-spectrum multiple-access systems where the different 4, o,channel interference, the primary and secondary signals
users necessarily share the same channel, cochannel interference ’

is a severe hindrance to frequency- and time-division multiple- may be _corrupted by mtersymbo! .|nterfe.rence (ISI) from

access communications, and is typically minimized by interfer- long multipath delays and by additive noise. Among these
ence rejection/suppression techniques. In this paper, rather than factors, cochannel interference often is the dominant channel
using interference suppression, we are interested in thgoint jmpairment. Instead of using interference suppression, as in

estimation of the information-bearing narrow-band cochannel .o ain applications like dual-polarized microwave radio [3],
signals. Novel joint estimators are proposed that employ a single-

input demodulator with oversampling to compensate for timing [4], We are interested inointly estimating both cochannel
uncertainties. Assuming finite impulse-response channel charac- signals.

teristics, maximum likelihood (ML) and maximum a posteriori Signal recovery schemes in the presence of ISI and cochan-
(MAP) C“lte“_? are Ujeg to de“V? cocfhannel detlectorst_of var- nel interference have been developed for various applications,
'(r;gb(;%??rﬁ’];))“ tl\?v%-ztnagejgigr:teel\; e g%ﬂ;?%gga o ?\?{Aﬁggg)a including crosstalk suppression in subscriber loops (see, e.g.,
is introduced that has a lower complexity than the single-stage [°] and the references therein) and asynchronous multiuser
estimators while accruing only a marginal loss in error-rate detectors for code division multiple access (CDMA) commu-
performance at high signal-to-interference ratios. Assuming only -nications [6]. Other related work include maximum likelihood
reliable estimates of the primary and secondary signal powers, a sequence estimation (MLSE) employed for a multichannel

blind adaptive IMAPSD algorithm for a priori unknown channels . S . .
is also derived. The performance of these nonlinear joint estima- transmission system [7], and joint ML algorithms designed

tion algorithms is studied through example computer simulations 0 recover digital signals using antenna arrays [8], [9]. Many
for two cochannel sources. other authors have also proposed such multiple-input detectors

Index Terms—BIlind adaptation, cochannel signal separation, (see, €g., [,10]’ [11]). ) . . )
MAPSD, MLSE. A single-input cochannel signal separation technique in
ISI-free channels for angle-modulated signals was proposed
in [12]. To our knowledge, the earliest published work on
cochannel signal recovery in the presence of ISl using a

ANY narrow-band communication systems encountaingle-input receiver was the quasi-linear “demod-remod”

cochannel interference, which is a major impairmenéchnique described in [13]. This demod-remod system is
to the reliable transmission of information. For examplaimple to implement; it is inherently a linear approach, with
the performance of telephone systems employing twistetie exception of some final error detection and correction.
pair subscriber loops is severely degraded in the presenceRekently, linear equalizers exploiting the excess bandwidth
cochannel interference called near-end crosstalk [1]. Anothar the cyclostationary nature of oversampled digital signals
example is a cellular radio network employing frequency reug@ve been proposed for ISI channels [14], [15]. These ap-

proaches require only a single-input demodulator, and have
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may be extended to multiple cochannel sources, we consider a PRIMARY CHANNEL
communication system model with one secondary data streami u ®
- . . ——-——-j-gm
to be jointly recovered along with the primary data stream. © . &
. . . . . I
We propose a single-input receiver with oversampling where v S eomvaToR |+ 4 ©
the sampling rate is chosen to provide sufficient insensitivity, « u, ) ?
to asynchronous sampling, but is otherwise independent o T/2 SAVPLER
the actual number of cochannel data streams to be recovered. SECONDARY CHANNEL
We describe a technique based on MLSE using the ViterBy 1 cochannel system model.
algorithm (VA) [17], and propose a MAP symbol detection
(MAPSD) algorithm [18] based on a Bayesian recursion. Since ted b
the cochannel data symbols are jointly recovered, we referfocC PY
the corresponding algorithms as joint MLSE (JMLSE) and U (t) = de(k)g(t — kT, m=1,2 1)

joint MAPSD (JMAPSD) [19], [20]. k

JMLSE and the closely related JMAPSD are optimal teCh_hereT is the symbol duration andd; (k)} and {da(k)}

nigues that can be expected to yield an improved bit-error rate . .
. are the primary and secondary source symbols, respectively.
(BER) performance compared to the linear/DFE approache . . ; X
e pulse functiory(¢) has a raised-cosine spectrum with a

[14]-[16]. It is possible to implement the IMAPSD algorith”bandwidthB given by 1/2T < B < 1/T. We propose a

using a suboptimaiwvo-stageconfiguration (employing a sec-,, ., . : d .
ondary feedback mechanism reminiscent of the demod—remjov/d2 spaced implementation, although it has about twice the

structure in [13]) to substantially reduce the computa’[iongﬁ)mIOIexIty of aT-spaced implementation, for the following

complexity. This feedback also greatly enhances the BER pregsons. 1) It eliminates the need for two whitening matched

formance for low power separation between the data strea flters. 2) It takes advantage of any excess bandwidt(i)
e low Si nal-to-Fi)nterferenpce ratios (SIR’S) r('aﬁthough no critical choice of excess bandwidth is required).
N 9 : 3) We expect thg’/2-spaced receiver to be nearly insensitive

Another joint estimation scheme for overcoming cochan: N .
to sampling time offsets, and hence be capable of recovering

nel interference was proposed recently in [21] where M nsynchronized cochannel signals more easily thai-a
adaptive radial basis function (RBF) equalizer was employ% aced implementation

to approximate the_ optimal Bayesian classifier fqr the 35" Thus, the discrete-time measurement samples of the re-
sumeq cochannel signal mo.del. AIthough the ponllnear REGived signalr(t) at the output of th&’/2 sampler in Fig. 1
equalizer may outperform linear equalizers, its complexné(re given by (forj = 0,1)

increases exponentially with the order of the equalizer. More-

over, the Bayesian classifier is strictly suboptimal compared ) 2 Lnm )

to MLSE and MAPSD algorithms of comparable complexity (kT +J1/2) = Z Z Jmp(KT + 5T/2)dm(k — p)

[22]. Hence, we expect the JMLSE and JMAPSD approaches m=1p=0

to yield a superior error rate performance compared to the +n(kT + j1/2)

RBF equalizer. =71 (KT + jT/2) + ro(KT + jT/2)
Finally, we describe alind MAP cochannel symbol de- + (kT + §T/2) )

tector fora priori unknown channels. When implemented as
a two-stage structure, this joint blind MAPSD (JBMAPSDYhere the noise sequencés (k7 + j7/2)} are assumed
algorithm [23] adaptively computes first the stronger (primaryp be mutually uncorrelated, white, and Gaussian with zero
signal and the corresponding channel estimates. The secondd@an and variance. The delay spreads of the primary
stage is adapted once the primary coefficients are closeaffl secondary channels akte7" and LT, respectively. The
convergence (which is typically about 100—200 samples lateP: + L2 +2 channel coefficient§ f,,, ,(kKT"+51/2)} represent
While this two-stage JBMAPSD may be employed whefi€ convolution of the impulse respons¢s,,(t)} of the
the primary and Secondary 5igna|s have a reasonable po%YSiCEI' communication medium with that of the transmit
separation (e.g., SIR- 20 dB), the single-stage JBMAPSDfilter g(t) sampled at’/2 seconds. The cochannel interference
algorithm will be necessary for lower SIR’s. component from thenth signal is given by

The paper is organized as follows. The fractionally spaced (KT + §T/2)

cochannel signal and receiver model is defined in Section IlI. L

For known channels, the JMLSE and JMAPSD approaches - . ET + 7/2)d,(k — j=0,1
are described in Sections Ill and IV, respectively. Bqriori I;fm’p( ST/ dn(k=p), J=0,1.
unknownchannel characteristics, the joint blind MAP symbol 3)

detector is described in Section V. Computer simulation results
are presented in Section VI, and conclusions are outlined Asynchronous arrival of the two data streams could result
Section VII. in symbol timing offsets. These effects are assumed to be
implicitly modeled by the channel coefficients.
For notational convenience and clarity in the sequel, we will
The assumed cochannel system model is shown in Fig.uke al’-spaced representation for the variables even though the
The transmitted low-pass equivalent waveforms can be repugderlying model has two samples per symbol; for example,

Il. COCHANNEL SIGNAL MODEL
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we will user(k) instead ofr (k7" + j1°/2). It should be men-

k
tioned that, throughout this work, we implicitly assume that d”._, PRIMARY ¢
i i i cranner 10
good estimates of the primary and secondary signal powers
are availablea priori. Assuming gain-normalized channels,
the signal-to-noise ratio (SNR) at the receiver input is defined k
A o a3 SECONDARY
by SNR = 10 log(P;/N,), while in the presence of one Yot gL 2
interfering signal, the signal-to-interference ratio is defined by

SIR £ 10 log(P1/P,). The signal powers arg; = E[df(k)] Fig. 2. Joint ML sequence estimation.

andN, /2 is the noise power spectral density. For the computer

simulations presented later, we fixed the primary signal POW&E ally computed by truncating the survivors aftdr — 5L

at P, = 1; with binary signaling (i.e., BPSK)?, = A% where symbols [24].

dy(k) € {+4,-A} and0 < A < 1. _ The joint VA (JVA) [19], [20], for IMLSE is implemented
The goal of the receiver is to accurately estimate g 5 method very similar to that of the standard VA. A joint

primary and secondary sequendes(k)} and{d»(k)} using state pF-LI-1 & (¥t gh=LlamLy s defined by ap-

estimates of the channel coefficient vectgrgk) and f,(k) i s A o1 Ly_lp

(wheref. (k) A o o(E)y fonn (B),eee f (W)]F). These pending the primaryd;;~** ") and secondaryd, ;=" "")

S m O\, JmL )t B : states. Hence, the number of states required to implement the
coefficients are either known (for JMAPSD and JMLSE) 0cr>ptimal JVA isMT1+L2 Observe that, in this case, each joint
blindly estimated (by JBMAPSD). state at timek — 1 can transition toM? states at timek,
and can be reached by the same number of states from time
Ill. JOINT ML SEQUENCE ESTIMATION k—2. For high-order signal constellations (e.g., 16-PSK or 64-

In the single-channel scenario, the aim of MLSE is tQAM_), complexity reduction techniques originally developed
determine the one sequeniée: {di(k), di(k—=1), -, d;(0)} for_smgle—channel MLSE, such as reduced-state sequence
out of all possible transmitted symbol sequences such tegtimation (RSSE) [25], may be employed for JMLSE. A
p(rk|dd) > p(7,k|d§)7w £ i, wherer* = {r(k),r(k — discussion of this approach is _beyond_the scope of this paper,
1),---,7(0)} is the received sequence. When the additiveut we have found that RSSE is beneficial at least for the case
noise components in (2) are independent and Gaussian, Shéninimum-phase channels.
above condition can be replaced by a Euclidean distance
criterion given by (forZ-spaced MLSE) IV. JOINT MAP SymBOL DETECTION
4 The MAP symbol-by-symbol decoding scheme [18] mini-

(1) — fj(l)|2, Vi £ mizes the probability of a symbol error, i.e.,

_ _ K
J—dmﬁ)p(d(/ﬂ L)|r*) (5)

I
R
=
—~
-~
N
|
23
!
~—~
-~
N
[
IA
o~
i~
o

4)
) ) ) o and can provide more reliable decisions than the VA for the
where{7;(k)} are the signal estimates generated flfising - same decoding delay. This can be understood from the fact that

the known channel coefficients. (ifi/2-spaced MLSE, each e probability of symbol detection is equal to the sum of all

term in the summation is replaced by two similar terms, onge sequence probabilitiggd¥|r*) containing that symbol,
for each sample per symbol.) For the joint detection of !

cochannel signals, the objective of JMLSE [19], [20] is to . o

determine thepair of sequences{d},,d5 } that minimize max p(d(k— L)|r") = max > p(di[r).
L 2, - (k—L) d(k—L) .

the sum of squared errors defined by the error (Ilkel|hood5 {i:di (k—L)=d(k—L)}

sequenceﬁj, as illustrated in Fig. 2. When the channel has a (6)

finite impulse response (FIR), the Viterbi algorithm (VA) is a Symbol-error-rate (SER) curves of thgind MAPSD al-

Fzri]c tli‘ilsvl:% : ; w:pclﬁgwrr]e: :ln?nzrrfr:gsilglgjgggénrlﬁg I\<|/;S%]orithm and the blind VA for QPSK signals and fast-fading

maintains a decoding trellis with?~ nodes or states (where|S| channels were investigated in [22]. In those simulations,

M is the size of the source alphabet) and an equal number Of found that for a decoding d.elay equal to the memory of
%fISI channel (we can consider this as being equivalent

. . . h
iurvrlg\(/)irojglqutergaes?ﬁi'i:ghsS:r?lgilgdgf p_arltl)Cl'J!a'\r ;(u kbie%l;]? nc%o symbol-by-symbol decoding), the blind MAPSD algorithm
P y y o is superior to the blind VA by nearly 0.5 dB. Thus, we

from which the presen_t sympm&(k) CO,?E Eleogtamed. For expect that the blind-adaptive JMAPSD algorithm (discussed
example, theith stqté is defined ?XICLZZL—I = {di(k = in section V) can have an error rate performance superior to
1),--+,di(k—L)}. Itis evident that/;™ """ can transition to  ha¢ of blind-adaptive JMLSE (based on the VA). However, for
M possible states at timig and that it could have been reachegpowntime-invariant channels, the advantage of the (nonblind)
from M different states at timé — 2. The VA decisions are \jaApsD algorithm over the VA is quite small (about 0.1

1Although a state is based ah previously transmitted symbols, we useFjB_See [22]). Moreover, once the decoding delay of the VA is

L —1 in the superscript 0&5‘1 "“=1 {0 be consistent with the notation usedmcre.ased’ it_s performance approaCheS that of optimal MLSE,
for the JMAPSD algorithm described in the next section. and is superior to that of the symbol-by-symbol MAP detector.
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Noting that p(d¥|r*) is proportional to thea posteriori 8 ke1) SFF
MLSE metric p(r*|d¥), the VA saves only the metrics of the DELAY 2 £
survivor sequences, and not of all the sequences containing rat 2 AkL
d(k— L). On the other hand, the MAPSD algorithm maintains, , - A max
; kL k Ak, L
a MAP metric p(d;"~|r*) for every subsequencef length ) - 5,00 [pRiMARY 4 [ F SECONDARY
L + 1 defined byd** £ {d;(k), -+, d;(k — L)}. Motivated (&= map sTace HED] 1 map sTace
by the FIR nature of the channel, (5) can be rewritten as lA o DECISIONS l
DECISIONS ¥ d (k-L ) 1 .
J = max Z Z p(df’Lh’k) (7 -¥ 500 dy(k-L )
d(k—L) d(k)  d(k—L+1) (2

where the subsequences are such ihglt — L) = d(k — L). 93 Twostage JMAPSD algorithm.

The recursion to calculate thgth MAP metric in the above

summations is given by presented in [30] for the VA. The main difference is that a

single feedback filter may be used in the MAPSD algorithm,
; ; 1 —1 gk hereas in DDFSE, each state in the VA trellis employs
d’y:L Y — Zo(r(k) kL d’f’L Wi ) ploy
p(di”" ) cp(7( It di) feedback.
Z p(df‘l’ﬂr’“—l) (8) For cochannel symbol detection, an optimal JMAPSD al-
it P eatn ) gorithm (of complexity A7Z1+12+2) may be obtained by

modifying the single-channel MAPSD algorithm using joint
s onk, L pgk,Ly gk, L P
where the normalization constaat= Mp(r(k)|r*—!). The Subsequences, i.eD;"" = {d);",d,;"}. This single-stage
summation in (8) is performed over the MAP metrics of alMAPSD algorithm should provide a BER performance com-
possible subsequencéﬁ_l’L at timek — 1 from which ¢~ parable to that of JMLSE for the same decoding delay.
could have been obtained. The likelihopth()|r*— dgf,L) However, it is preferable to use the JVA when longer decoding

. ) ke, L : ._delays can be tolerated because the complexity of IMAPSD
gv;ngiaenqu?IeSp(7(k)|di ) when the channel is known) ISgrows exponentially with the decoding delay, while it is

essentially linear for the JVA (once the trellis is constructed).

p(7;(/€)|df:L) :/\/(T(k);fi(k),gg) Because of this complexity, in the computer simulations of
1 Section VI, we compare the algorithms to single-stage JMLSE

} (9) in place of single-stage JMAPSD.

A computational advantage is obtained when the single-

where #;(k) = hi(k)f(k — 1), hi(k) = [di(k), -+, d;(k — stage JIMAPSD algorithm is reconfigured as a (suboptimal)

L)] is the data (row) vector, ang’(k — 1) = [fo(k — two-stagealgorithm, as illustrated in Fig. 3. The subsequence

1), -, fu(k = 1)]¥ is the coefficient (column) vector. Thedecisions of the primary MAP stage, denoted dﬁyflgx and

corresponding detection algorithm was first derived in [18jorresponding to the largest probability metric [given below

for known channels, and was extended to blind estimation fisr (13)], are used to compute the primary signal estimate

unknown channels in [26], [27]. L

The complexity of the single-channel MAPSD algorithm is o _ _ 1\ _

roughly the same order as that of MLSE. (Note that although Pik) = Z Jrp(k = Dy, = p), 1)

MLSE maintainsM* states, it calculates the same number

of likelihoods as does MAPSD witd/“+! subsequences.)yielding the residual error signah(k) = r(k) — #1(k). This

A suboptimal MAP rule was introduced in [26] to make #rror becomes the input of the second MAP stage, which

decision on the(k — L)th symbol (at timek) according to models theM I=+1 subsequences of the secondary channel.

p=0

j(k — L) = d;(k — L) where Hence, the complexity of two-stage JMAPSD is only on the
. L L order of M+l 4 A E2+l The assumption here is that the
doF =d", j=arg mz?lXp(di’ r*). (10) SIR is sufficiently large such that the primary MAP metrics

converge; thus, cancellation of the primary signal component

The complexity of the single-channel MAPSD algorithms nearly complete, and,(k) contains only the secondary
can be reduced by introducing decision feedback. In thiggnal component (plus additive noise). Note that we could also
MAP/decision-feedback (MAP/DF) approach [28], [29], & Dijerive a two-stage JMLSE implementation utilizing RSSE.
filter of length Lys < L + 1 is cascaded with the MAPSD However, since low-delay decisions would be required at the
algorithm to truncate the effective channel memory. The siggitput of the first stage, IMAPSD is preferable because it can
of the MAPSD section is reduced accordingly d6"+1~4 via|q 3 Jower error rate than the VA for the same delay.
states. Hence, a performance-complexity tradeoff is possiblep feedback filter may be used to subtract a partial esti-
ranging from that of the full MAP estimatdiLqs = 0) to the mate of the secondary signal from the input. As a result,
ideal DFE (Ly; = L).? The MAP/DF approach is similar to the two-stage JMAPSD algorithm will perform satisfactorily
the delayed decision-feedback sequence estimator (DDF&Ggn under low-to-medium SIR conditions. This secondary

2The ideal DFE refers to ard-tap feedback filter which cancels thefeedbaek filter (SFF) is also shown in Fig. 3 where the partial
posteursor IS; there is no feedforward section to handle the precursor ISlestimate 72(k) is evaluated using théast L, suboptimal
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decisions ofd} .-"* [i.e., using all the suboptimal decisionswheres,, ; (kT + jT/2) = b i(k)f (KT + jT/2), j = 0,1
at timek — 1 with the exception of the MAP symbol decision[similar to (3)]. Referring to (11) and (12), note that for the

2 max(k — 1 — Lo)] as follows primary MAP stages; (kT+31/2) = r(kT+jT/2)—72( KT+
Lo JT/2), while for the secondary MAP stage, (kT + jT/2) =
Po(k) = fap(k = 1)da max(k — p)- (12) (KT +jT/2) — # (KT +4T/2). In general, it may be argued
p=1 that, depending on the ISI shaping and random timing jitter

Hence, #,(k) is an estimate of the secondary interferend@troduced by the channels, either the odd or the even sample is
from all L, previous secondary symbols excluding the currefpund to capture more of the received signal power. Thus, the
symbol dy(k). The residual signak;(k) = r(k) — #2(k) corresponding likelihood term in (15) may be more reliable
becomes the input to the primary stage. (i.e., it may be closer to the true likelihood obtained in the
The following remarks can be made regarding this two-stagbsence of timing offset). However, both the even and odd
scheme. 1) Although the SFF may introduce some error pragample likelihoods in (15) are given the same weight. It may
agation due to the decision feedback, for low SIR simulatiote worthwhile to see if any BER performance advantage
we have found a significant improvement in performahceds obtained by using some other weighting scheme, but we
2) Due to the uncancelled ISI contribution from the currerttave not investigated this. In computer simulations, we have
secondary symboil;(k) (even when the decisions enteringachieved good performance by equally employing the even
the computation off;(k) are correct), the residual (k) of and odd samples.
the primary MAP stage conditioned on the input sequence is
not Gaussian in generdlHowever, under low-SNR and/or V. JOINT BLIND MAPSD (JBMAPSD) AGORITHM
high-SIR conditions, the effect of this additional term on the
overall error-rate performance is likely to be minimal. Thus, The JBMAPSD algorithm is also based on the two-stage
the conditional likelihoods in the primary MAP stage aratructure in Fig. 3 where each stage, in addition to demodu-
approximated by Gaussian functions in order to employ thating one cochannel signal, also estimates the corresponding
MAPSD approach. Note that some performance degradatitftannel coefficients. The adaptation algorithm for each stage
can be expected at low-SIR conditions if the noise powessembles thel-spaced, single-channel blind MAPSD al-
o2 is reduced. This anomalous behavior at high SNR’s hgsrithm described in [26],A[g7]_ In this blind algorithm, a

been observed in computer simulations, and is found to Bgnditional channel estimatg,, (k) is maintained for each

dependent on the uncancelled ISI teffno(k)dz(k) of the g psequence:Z™ (of lengthL,,). Once the the MAP metrics
secondary channel.

The MAP metrics in each stage are updated independerﬁfe updated, “unconditional” estimatgs, ;(k) are obtained
as in the single-channel MAPSD algorithm, i.e., '

gm the appropriate predecessor metrics and conditional esti-
mates [22], [27]. We extend each of these steps to the two-stage

p(dif k) = lp(sm(/ﬂ)vk—l,dﬁ;ﬁm) JBMAPSD algorithm.
¢ kLD Jol The original single-channel blind MAPSD algorithm as-
Z p(dm,j’ "l ) (13) sumed a first-order autoregressive model for the channel
{grar b bmedh tm ) coefficients, and incorporated a Kalman filter to update the

wheres, (k) is the input to thenth MAP stage as defined ear_channel and error covariance estimates. In order to reduce
m

lier, and the conditional likelihood is assumed to be GaussidR® Complexity, simpler stochastic gradient adaptation was
ie. employed in [27] resulting in LMS (least-mean-square) [31]

Rl kL . 9 update rules. The LMS update may be viewed as a stochastic
plsm(Rr " d) = N (sm(k); P i (), 07) (14) gradient descent on a conditional cost function; a direct
wheref,, ;(k) is the signal estimate assumidgﬁm was sent, extension of this method yields the single-stage JBMAPSD
and o depends on the noise power. The summation in (18)gorithm with the conditional cost function given by
is similar to that in (8).
The overall two-stage JMAPSD is summarized in Table | min Jpl)t(k)
using theT-spaced notation. For @/2-spaced implementa- ? _(k_l)? (1) ¢
tion, note that the likelihood function in (9) will be a product b e R )
of the even and odd sample likelihoods as follows = min |r(k) — H;(k)F;(k — 1)| ,
X k,Lv, Fix-1)
pr(k)la” ™) i=1,., MEHLt2 (16)
= ./\/(sm(kT); Pm,i (K1), 02) o
- N (s (kT + T/2);# i (KT + T/2),0%) (15) o
whereH; (k) = [hy,:(k), ho (k)] is the joint subsequence, and
, Fi(k-1) = [?lTi(k—l),?;(k—l)]T is the joint channel esti-
It should be mentioned that this two-stage JMAPSD structure (al - i@pt i - -
Qescribed in [20]) is‘slightly‘ different from the one proposed in [19], bu?ﬁate'. The .SUperSC”ﬁF indicates that the re?“.'t”.‘g a.lgorlthm
is exactly equivalent in function. Is optimal (in the LMS sense) because the minimization is done

41t is not Gaussian even if the secondary signal is completely cancell@)mtly over bOth. coefficient vectors, y'eld'ng a smgle'Stage
(except for the current secondary symidgl k), as mentioned above). JBMAPSD algorithm.
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TABLE |
SUMMARY OF THE TwoO-STAGE JMAPSD ALGORITHM.

Primary MAP Stage

STEP 1: Determine Primary Input
81(k) = r(k) — #2(k)

STEP 2: Update Primary MAP Metrics Using (13)
STEP 3: Compute Primary Decisions Using (10)
STEP 4: Compute Total Estimate of Primary Signal

Ly
i‘l(k) = E fl.p(k - l)fil,maz‘(k —P)

p=0

Secondary MAP Stage

STEP 5: Determine Secondary Input
sz(k) = r(k) — #1(k)

STEP 6: Update Secondary MAP Metrics Using (13)
STEP 7. Compute Secondary Decisions Using (10)
STEP 8: Compute Partial Estimate of Secondary Signal

Ly
fa(k+1) = fap(k)domaz(k+1—p)

p=1

Return to STEP 1

On the other hand, for the two-stage configuration in Fig. eferring to Fig. 3 and assuming that the primary decisions
two separate cost functions are considered: d-L are correctyo (k) is replaced by

JPP(R) = [ru(k) = #1a(R) s5(k) = s2(k) = r(k) — #1(k) (19)
T3P (k) = |ra(k) = fa;

2 o~
(B)| (17) where 71 (k) = i nax(E)fi max(k — 1) is determined from
wherei = 1, M+ j = 1 ... ML+l the subsequence_ and cha_mrjel estimates cqrrespondlng to the
largest MAP metric. In a similar manner, (k) is replaced by
$1(B) = [r(k) = 72(k)] = J35%(k = 1)d2mmax(k)
Sl(k) - ;}gx(k/‘ - 1)d2,max(k) (20)

—
— T2,

Frng (KT + 5T/2) = b i (k) f (O = DT + 5T/2), (18)

which is based on the channel estimates from the previ-
ous instant. Decoupling of the primary and secondary cost
functions is clearly suboptimum (hence the supersciipj. wheref%x(k —1) and cimax(k) are also determined by the

Becauser; (k) andr.(k) are not directly available, they mustlargest MAP metric. Thus, in addition to the partial secondary
be approximated using the previous subsequence decisi@stimate?,(k) produced by the SFF in Fig. 3, the decision
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CZQ,max(k) obtained after updating the secondary MAP metrics TABLE I
is also fed back and weighted by the first coefficient of SUMMARY OF THE TWO-STAGE JBMAPSD ALGORITHM.

o~

J2 max(k —1). In this way, the accuracy of the gradient value

entering the computation (fii(k) is enhanced.

Using the above assumptions, namedy(k) ~ (k) and
sh(k) =~ r2(k), the conditional gradient estimates for theh
MAP stage(m = 1,2) are given by

STEPS 1-3: Similar to STEPS 1-8 in Table 1

STEP 4: Compute Total Estimate of Primary Signal

Ly
aJsub(k) N Fi(k) = Efl'?;r(k = 1)d1,maz(k — p)
e = = 20, (k) = hai(k) f i (k = DR (), 7=
afrn,i(k - 1) 7 7
i=1,..-, ML'm+1’ 1) STEPS 5-7: Similar to STEPS 5-7 in Table 1
yielding the following LMS update for theth conditional STEP & Improve the Accuracy of the Primary Signal
channel estimate in thesth stage for STEP 9a Using the Latest Decision from the

Secondary Stage

k) =%, (k=1 BE (B)[s. (k) =7, (k)]. (22 A .
) (k=1 4+ p(k)n) (k) [sy, (k) — Pm,i(K)]. (22) ) = 1K) 087k — Delpmen(K)

The corresponding unconditional estimate is

-~ ~C
I mﬂ(k) Z f msj (k) STEP 9a: Compute Primary Conditional Updates Using (22)
{J:df,;,ij Ed]':nfil o STEP 9b: Compute Primary Unconditional Updates Using (23)
kLo |,k
p (drn, J |7 ) 23
kLo kY (23) STEP 10a: Compute Secondary Conditional Updates Using (22)
> p(dnrlr)

STEP 10b: Compute Secondary Unconditional Updates Using (23)
{n:dfy{an edithIm

These summations are defined in a manner similar to that jn

(8). STEP 11: Compute Partial Estimate of Secondary Signal
When T'/2-spaced estimators are employed, separate cqst Falk 1) = if“’"“(k)uiz (k=p+1)
functions are defined for the even samp{é7’) and the odd = -

sampler(KT+7T/2). For the primary MAP stage, the even and
odd cost functions are given by [analogous]fgb(k) in (17)]

T (KT + 5T/2) = | (kT + 5T/2) — 1 3(KT + jT/2)2, Return to STEP 1

J=01 (24)

and the corresponding even and odd conditional gradients 8

(analogous to (21) forn = 1) {/estacking them together (since they have the same MAP

metrics).
WP (KT + jT/2) The corresponding expressions for the secondary MAP
8?17i(kT —T/2) stage are similar to those in (24)—(26). Complexity reduction

J . techniques, such as the decision-feedback scheme in [29] or
- _2[31(k7;+JT/2) metric pruning [22], may be employed by this blind algorithm.

— hyi(k)f (KT = §T/2)]h{ (k) (25) The two-stage joint blind MAPSD algorithm is summarized
o . L4l in Table Il using thel-spaced notation. Note that we could
for j = 0,1, and: = 1o, M L Observe that, although 555 derive a two-stage joint estimation algorithm based on
the error terms foyj = 0,1, are different, the even and odde pling MLSE/VA approaches in [32], [33]. However, as
conditional updates above use the same data véglelk). giscussed previously for the nonblind JMAPSD algorithm,
Finally, the conditional likelihood computation in (14) iS5, delay decisions are required by the second stage so that
modified for the primary MAP stage to be the MAP approach is preferred (as it can yield a lower error

p(s(k)|rEL, db b rate for low-decision delays).

= N (s1(KT)s 714 (KT), %)

VI. COMPUTER SIMULATIONS
-/\/(sl(kT +T/2);71 (kT +T/2), 02) (26)

For binary signaling (BPSK), the primary and secondary
because the{n(kT + jT/2)}, j = 0,1, are assumed to BER'’s of the simulated algorithms were computed for the
be mutually uncorrelated, and where (kT + j7/2) = channel model in (2). The coefficients in Table Ill were used
hii(k)f (k= )T + jT/2), j = 0,1. The form of the in the first set of simulations; their frequency responses are
unconditional update remains unchanged from (23), excegttown in Fig. 4. The optimall/2t = 212 = 4096-state
that the even and odd estimates can be computed joinivVA (JMLSE) was compared with the suboptimal two-stage
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0 ] TABLE 1l
. T'/2-sPACED CHANNEL COEFFICIENTS
-10 - i Primary Secondary
3 —20f = 0.03687 + 0.01069 | 0.00143 + 50.01187
o E 3 —0.04924 + 50.01239 0.03958 + 70.02610
§ —30 . I —0.07221 — 0.00453 | 0.10806 + j0.01603
C v ———__ Primary w N E . ,
—a0f Y Z7C Secondary V3/\ *0.07563 — j0.03614 |  0.13480 — 50.01580
50 E e l"’. ‘ . ] 0.14937 — 50.02998 0.06418 — 50.02735
_4 _3 0 2 4 —0.06092 + 50.05171 | —0.03438 + 70.00071
Radian Frequency ~0.26619 + 70.11931 | —0.04526 4 50.02663
(a) —0.09562 + j0.02440 |  0.01293+ 50.01065
5 0.25408 —- 50.20513 |  0.02962 — 50.01447
. I ! : 0.32938 — j0.34410 | —0.00848 — §0.00619
Foon B : 0.13014 — j0.26904 | —0.02183 + j0.01307
o O MEL i~ ~0.00265 — j0.11041 |  0.00265+ 50.00778
g FooN Y y 0.01960 — 50.02915 [  0.01088 — 50.00544
A 5[ ] 0.03387 — 50.01374 | 0.00000 + 70.00000
- Primary -
i — — — Secondary ]
_10 i 1 1 1 1 I 1 1 1 1 [ 1 1 1 1 | 1 1 1 1 ] 1 i i ' i l i ' ' ' l ' ' ' ! g
4 P 0 2 4 - SNR = 27 dB //:
Radian Frequency 0.1 S~ el
£ - -
(b) . RN E 514
5 001k 3 -

251
Fig. 4. T/2-spaced channels. (a) Magnitude response. (b) Phase response™

P

_—— Pri., Sec. BERs

. 1,2— JMAPSD: SFF Present
IMAPSD Prap, Pt Swaps Sar) algorithm whereFP,;,,;, and 34— IMAPSD: SFF Absent

Py refer to the number of primary”) channel coefficients 00001 L o ¥ L v v by
modeled by the MAP and DF sections, respectively (similar ) 0 10 20
definitions apply for the secondarys) channely (For ex- SIR (dB)

ample, JMAPSD(5,1,4,3) is a2® = 32-state MAP section

cascaded with a one-symbol DF filter for the primary channdl9- 5 Effect of SFF on the BER's of two-stage JMAPSD.

and a 16-state MAP section cascaded with a three-symbol DF
filter for the secondary channel.) coefficients). It can be seen that IMAPSD(0,6,0,6) corresponds

The effect of the SFF at various SIR’s on the twolO this JDFD structure, where the MAP section is absent and
stage JMAPSI®,1,6,1) algorithm is illustrated in Fig. 5 the DF section in each stage is a six-tap FIR filter. At the lower
for SNR = 27 dB. Notice that forSIR < 6 dB, the SFF SIR, the JDFD requires about 35 dB more SNR to achieve
provides more than an order of magnitude improvement i€ same BER as the JMAPSD algorithm, and at least 10 dB

the error rate performance. From the BER curves in Fig. 6(&0re at the higher SIR.

for SIR = 0 dB, note that JMLSE provides the best error rate The various joint detectors were also compared for an
performance. However, observe from Fig. 6(SIK = 10 artificial near minimum-phase channel with the coefficients in
dB) that the two-stage JMAPSD algorithm (which include§@ble IV. The corresponding BER curves are shown in Fig. 7
the SFF) provides nearly the same performance as JML&E two values of SIR£ 0and10 dB). Since the channels have
(or, equivalently, the single-stage JMAPSD). The MAP/DP Span of onlyT” seconds (i.e., eight/2-spaced coefficients),

computational savings, but at the cost of some performari&¥ two-stage JMAPSD algorithm has = 16 states in each of
degradation. its stages. Since both the primary and secondary channels have

The error rate performance of a simple two-stage joiﬁ@ost of their ISI contribution from the first two symbols (i.e.,

decision-feedback detector (JDFD) is also included in Fig.fgpm the first fourT’/2-spaced coefficients), IMAPSD(2, 2, 2,
for comparison purposes. This JDFD is a direct extension #f Was also implemented. From these results, the following
the single-channel ideal DFE to the cochannel measurem@hgervations can be made. 1) For low SIR's, JMLSE yields
model (i.e., there are no feedforward taps and obly- 1 the best BER performance; observe, however, that for SIR
feedback taps to cancel the postcursor ISI of a channel with= 10 dB in Fig. 7(b), the BER curves of JMAPSD(4, 0, 4,
0) are virtually indistinguishable from those of JMLSE. 2)
s mentioned earlier, the two-stage JMAPSD structure may
suffer from uncancelled secondary power due to the symbol

YT
4V

0.001

[
1 x|1||||| I llllllll 1 1||||||I

W
o

5As mentioned previously, we will compare the algorithms to single-sta
JMLSE since, for low-delay decisions, the performance of JMLSE is simil
to that of IMAPSD, and it has a lower complexity.
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SIR = 0 dB
Pri., Sec. BERs
1,2— JMLSE
3,4— JMAPSD(8,1,6,1)
5,6— JMAPSD(5,1,4,3)
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Fig. 6. BER's of the joint detectors for the channels in Table IISH} = 0
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T T AT

. ]
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@
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Fig. 7. BER’s for the near minimum phase channels in Table IV. (a)
SIR = 0 dB. (b) SIR = 10 dB.

TABLE V

TABLE IV
T'/2-SpaceD COEFFICIENTS OF THENEAR MINIMUM -PHASE CHANNELS.
Primary Secondary
~0.35 + j0.20 0.10 + 50.25
—0.30 + 50.55 0.15 - j0.35
—0.05 — j0.60 | —0.45 + j0.20

0.30 - j0.15 0.10 — j0.55
0.15 - 70.35 0.25 + j0.10
-0.20 + j0.25 | —0.30 + j0.25
0.15+ 50.10 0.15 - 70.05
—0.05 + j0.05 0.05 + 70.10

JMLSE and JMAPSD structures).

stage, i.e.u(k) = B*u, with

I/LO_O'v

T'/2-SpAcED CHANNEL COEFFICIENTS FOR THEJBMAPSD ALGORITHM

Primary

Secondary

0.139 — j0.068
0.607 — j0.284
0.772 — j0.427
0.547 — j0.420
0.264 — j0.275
0.071 — j0.066

0.378 — j0.175
0.748 — j0.372
0.688 — j0.442
0.397 — 70.364
0.158 — j0.170
0.005 + 50.010

stage,it, = 0.8 and 3 = 0.9999. Because the algorithm was

studied for reasonably large SIR’s (i.e.,

low secondary signal

powers), a higher gain was chosen for the secondary stage to
improve its convergence rate.
da(k). This is evident in Fig. 7(a) where, at high SNR’s, Fig 8(a) and (b) shows the evolution of the probability
its performance is slightly poorer than that of the simplefetrics of the primary and secondary MAP stages for one run
JDFD [i.e., IMAPSD(O, 6, 0, 6)]. 3) The JDFD algorithmpf the algorithm with SNR-25 dB and SIR-15 dB. Since
can yield adequate performance under such mininum-phase channels have sif’/2-spaced coefficients, there were
channel conditions (say, within 4-5 dB of the more complex® = 8 metrics. Observe that, in the primary MAP stage, one
of the metrics converges to unity in less than 100 iterations.
The joint blind MAP symbol detector (JBMAPSD) wasAlthough the metric trajectories are noisier in the secondary
simulated for the artificial channel coefficients listed in TabIMAP stage, there is still only one metric that dominates the
V. The even and odd filter coefficients were updated usimgst. Fig. 8(c) shows the trajectories for the corresponding
the corresponding gradients in (25). In order to reduce tkg@semble-averaged coefficient errors. These were generated
misadjustment error at convergence, the step (& in (22) by averaging the squared error between the actual chgipel
was allowed to decay at a rate 8f= 0.995 for the primary and the estlmatfm max (K) corresponding to the largest metric

for the secondary at each iteration [i.e|f,, — f,,max( W2/ (L + )]
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Fig. 8. Performance results of the JBMAPSD algorithm for the channels in Table V. (a) Primary metric trajectories. (b) Secondary metric trajectories
(c) Coefficient error trajectories. (d) BER curves.

Finally, BER curves are shown in Fig. 8(d) with resultsate samples to the detector, obviating the need for whitening
as expected. For higher SNR’s (not shown), the curves temdtched filters. When the channel coefficients are known,
to level off with a lower limit determined by the error ratesingle-stage JMAPSD and JMLSE are optimal techniques
achieved without additive noise. There is a difference of 12-PBoviding the lowest possible BER’s. However, for high
dB between the primary and secondary curves. Hence, ®IR conditions, the suboptimal two-stage JMAPSD algorithm
the same relative SNR's (e.g., primary error rate at SNB can provide a performance approaching that of (single-stage)
dB and secondary error rate at SNRO+SIR=25 dB), the JMLSE, but at a much lower complexity.
secondary stage has a slightly better performance. This iSye have also presented a blind adaptive algorithm for
expected because the converged primary coefficients yigl recovery of cochannel data streams in the presence of
falmost complete cancellation of the primary signal from thg| This joint blind MAP symbol detection (JBMAPSD)
input to the secondary stage of the algorithm, whereas g qithm also employs a single-input receiver with a two-
effect of the most recent secondary symbol is not cancellgd o syrycture where the first stage estimates the strongest
from the primary _stage Input. Anot_her reason for th|s_|s that ﬂ%‘? nal and the second stage estimates the weaker signal. The
secondary.decmons are_less reliable when the primary Slg responding channel coefficients are estimated using LMS
= 10 dB since the effective SNR for the secondary sigaal gradient updates. By employing feedback of past decisions,

10 - 15 = -5 dB. the effect of cochannel interference is reduced at the input to
In summary, we expect the performance of the two-stage

JMAPSD algorithm to degrade for the following scenarios:a;.h stlage. Its f . ianal and h |
1) at low SNR when the SIR is close to 0 dB, and 2) when imulation results for a primary sighal and one cochanne

Fa.0(k) of the secondary channel (corresponding to the WeaR’QFerferer-demo.nstrate the rapid convergence properties that
signal) is large relative to the other coefficients. In additiof?'® possible with the twofsta}ge JBMAPSD algorithm. The
the two-stage blind algorithm JBMAPSD will not convergeBER performgnce curves indicate that the scheme performs
satisfactorily at low SIR’s, especially if the secondary chann@éll for relatively high SIR’s. However, the overall per-

coefficients are similar to those of the primary channel (e.dormance of the blind algorithm depends on the condition
if they are nearly scaled versions of each other). that the primary channel coefficients converge, despite some

residual interference from the secondary signal. Hence, the
VII. CONCLUSION two-stage implementation may not perform well for low SIR’s,
Nonlinear techniques for the joint estimation of narrowwhereas the single-stage JBMAPSD (or blind JMLSE) algo-
band cochannel signals have been presented. These technitjtles should be able to provide better performance (depending
use a single-input receiver which directly provides Nyquistn the specific channels encountered).
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In the presence of multiple cochannel signals, a multistagig] G. D. Forney, “Maximum-likelihood sequence estimation of digital
JMAPSD (and JBMAPSD) algorithm may be derived by a
direct extension of this work. Unlike linear MMSE-baseqg;
receivers, the nonlinear detectors proposed here are sensitive channels with intersymbol interferenceProc. IEEE vol. 58, pp.
only to the relative signal powers of the cochannel sourceﬁgl
Three or more cochannel signals could be detected in the
same bandwidth, provided their signal powers are not equal.

However, it is likely that the effect of cascading several MAI?20

sections will lead to a higher incidence of error propagation

due to the SFF and decision feedback. Also, the correspondinﬂ
single-stage algorithm for multiple cochannel signals ma@

be computationally expensive. As a result, these algorithms
may be better suited for cochannel interference mitigation i#¢]
mobile radio systems employing frequency reuse where there
is usually only one significant interferer, rather than in digite3]
subscriber loop applications where there are many cochannel

sources.
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