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Nonlinear Techniques for the Joint
Estimation of Cochannel Signals
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Abstract—Cochannel interference occurs when two or more
signals overlap in frequency and are present concurrently. Unlike
in spread-spectrum multiple-access systems where the different
users necessarily share the same channel, cochannel interference
is a severe hindrance to frequency- and time-division multiple-
access communications, and is typically minimized by interfer-
ence rejection/suppression techniques. In this paper, rather than
using interference suppression, we are interested in thejoint
estimation of the information-bearing narrow-band cochannel
signals. Novel joint estimators are proposed that employ a single-
input demodulator with oversampling to compensate for timing
uncertainties. Assuming finite impulse-response channel charac-
teristics, maximum likelihood (ML) and maximum a posteriori
(MAP) criteria are used to derive cochannel detectors of vary-
ing complexities and degrees of performance. In particular, a
(suboptimal) two-stage joint MAP symbol detector (JMAPSD)
is introduced that has a lower complexity than the single-stage
estimators while accruing only a marginal loss in error-rate
performance at high signal-to-interference ratios. Assuming only
reliable estimates of the primary and secondary signal powers, a
blind adaptive JMAPSD algorithm for a priori unknown channels
is also derived. The performance of these nonlinear joint estima-
tion algorithms is studied through example computer simulations
for two cochannel sources.

Index Terms—Blind adaptation, cochannel signal separation,
MAPSD, MLSE.

I. INTRODUCTION

M ANY narrow-band communication systems encounter
cochannel interference, which is a major impairment

to the reliable transmission of information. For example,
the performance of telephone systems employing twisted-
pair subscriber loops is severely degraded in the presence of
cochannel interference called near-end crosstalk [1]. Another
example is a cellular radio network employing frequency reuse
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where one or more secondary signals from nearby cells can
interfere with the desired (primary) signal [2]. In addition
to cochannel interference, the primary and secondary signals
may be corrupted by intersymbol interference (ISI) from
long multipath delays and by additive noise. Among these
factors, cochannel interference often is the dominant channel
impairment. Instead of using interference suppression, as in
certain applications like dual-polarized microwave radio [3],
[4], we are interested injointly estimating both cochannel
signals.

Signal recovery schemes in the presence of ISI and cochan-
nel interference have been developed for various applications,
including crosstalk suppression in subscriber loops (see, e.g.,
[5] and the references therein) and asynchronous multiuser
detectors for code division multiple access (CDMA) commu-
nications [6]. Other related work include maximum likelihood
sequence estimation (MLSE) employed for a multichannel
transmission system [7], and joint ML algorithms designed
to recover digital signals using antenna arrays [8], [9]. Many
other authors have also proposed such multiple-input detectors
(see, e.g., [10], [11]).

A single-input cochannel signal separation technique in
ISI-free channels for angle-modulated signals was proposed
in [12]. To our knowledge, the earliest published work on
cochannel signal recovery in the presence of ISI using a
single-input receiver was the quasi-linear “demod–remod”
technique described in [13]. This demod–remod system is
simple to implement; it is inherently a linear approach, with
the exception of some final error detection and correction.
Recently, linear equalizers exploiting the excess bandwidth
or the cyclostationary nature of oversampled digital signals
have been proposed for ISI channels [14], [15]. These ap-
proaches require only a single-input demodulator, and have
been extended to decision-feedback equalization (DFE) [16].
In these techniques, the amount of excess bandwidth required
is directly proportional to the number of cochannel signals to
be jointly recovered.

In this paper, we are interested in cochannel signal demod-
ulation using a single-input/multiple-output (SIMO) detector.
Although the combined channel model and detector constitute
a multiple-input/multiple-output (MIMO) system, we refer to
the detector as being SIMO because it receives and processes
a single (complex) data stream. This is done to distinguish
the algorithms from those based on an array of antenna
elements (as in [8], for example), which process multiple
input data streams (i.e., they incorporate spatial as well as
temporal processing). Although the approaches discussed here

0090-6778/97$10.00 1997 IEEE



474 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 4, APRIL 1997

may be extended to multiple cochannel sources, we consider a
communication system model with one secondary data stream
to be jointly recovered along with the primary data stream.

We propose a single-input receiver with oversampling where
the sampling rate is chosen to provide sufficient insensitivity
to asynchronous sampling, but is otherwise independent of
the actual number of cochannel data streams to be recovered.
We describe a technique based on MLSE using the Viterbi
algorithm (VA) [17], and propose a MAP symbol detection
(MAPSD) algorithm [18] based on a Bayesian recursion. Since
the cochannel data symbols are jointly recovered, we refer to
the corresponding algorithms as joint MLSE (JMLSE) and
joint MAPSD (JMAPSD) [19], [20].

JMLSE and the closely related JMAPSD are optimal tech-
niques that can be expected to yield an improved bit-error rate
(BER) performance compared to the linear/DFE approaches in
[14]–[16]. It is possible to implement the JMAPSD algorithm
using a suboptimaltwo-stageconfiguration (employing a sec-
ondary feedback mechanism reminiscent of the demod–remod
structure in [13]) to substantially reduce the computational
complexity. This feedback also greatly enhances the BER per-
formance for low power separation between the data streams,
i.e., low signal-to-interference ratios (SIR’s).

Another joint estimation scheme for overcoming cochan-
nel interference was proposed recently in [21] where an
adaptive radial basis function (RBF) equalizer was employed
to approximate the optimal Bayesian classifier for the as-
sumed cochannel signal model. Although the nonlinear RBF
equalizer may outperform linear equalizers, its complexity
increases exponentially with the order of the equalizer. More-
over, the Bayesian classifier is strictly suboptimal compared
to MLSE and MAPSD algorithms of comparable complexity
[22]. Hence, we expect the JMLSE and JMAPSD approaches
to yield a superior error rate performance compared to the
RBF equalizer.

Finally, we describe ablind MAP cochannel symbol de-
tector for a priori unknown channels. When implemented as
a two-stage structure, this joint blind MAPSD (JBMAPSD)
algorithm [23] adaptively computes first the stronger (primary)
signal and the corresponding channel estimates. The secondary
stage is adapted once the primary coefficients are close to
convergence (which is typically about 100–200 samples later).
While this two-stage JBMAPSD may be employed when
the primary and secondary signals have a reasonable power
separation (e.g., SIR 20 dB), the single-stage JBMAPSD
algorithm will be necessary for lower SIR’s.

The paper is organized as follows. The fractionally spaced
cochannel signal and receiver model is defined in Section II.
For known channels, the JMLSE and JMAPSD approaches
are described in Sections III and IV, respectively. Fora priori
unknownchannel characteristics, the joint blind MAP symbol
detector is described in Section V. Computer simulation results
are presented in Section VI, and conclusions are outlined in
Section VII.

II. COCHANNEL SIGNAL MODEL

The assumed cochannel system model is shown in Fig. 1.
The transmitted low-pass equivalent waveforms can be repre-

Fig. 1. Cochannel system model.

sented by

(1)

where is the symbol duration and and
are the primary and secondary source symbols, respectively.
The pulse function has a raised-cosine spectrum with a
bandwidth given by . We propose a

-spaced implementation, although it has about twice the
complexity of a -spaced implementation, for the following
reasons. 1) It eliminates the need for two whitening matched
filters. 2) It takes advantage of any excess bandwidth in
(although no critical choice of excess bandwidth is required).
3) We expect the -spaced receiver to be nearly insensitive
to sampling time offsets, and hence be capable of recovering
nonsynchronized cochannel signals more easily than a-
spaced implementation.

Thus, the discrete-time measurement samples of the re-
ceived signal at the output of the sampler in Fig. 1
are given by (for )

(2)

where the noise sequences are assumed
to be mutually uncorrelated, white, and Gaussian with zero
mean and variance . The delay spreads of the primary
and secondary channels are and , respectively. The

channel coefficients represent
the convolution of the impulse responses of the
physical communication medium with that of the transmit
filter sampled at seconds. The cochannel interference
component from the th signal is given by

(3)

Asynchronous arrival of the two data streams could result
in symbol timing offsets. These effects are assumed to be
implicitly modeled by the channel coefficients.

For notational convenience and clarity in the sequel, we will
use a -spaced representation for the variables even though the
underlying model has two samples per symbol; for example,
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we will use instead of . It should be men-
tioned that, throughout this work, we implicitly assume that
good estimates of the primary and secondary signal powers
are availablea priori. Assuming gain-normalized channels,
the signal-to-noise ratio (SNR) at the receiver input is defined
by , while in the presence of one
interfering signal, the signal-to-interference ratio is defined by

. The signal powers are
and is the noise power spectral density. For the computer
simulations presented later, we fixed the primary signal power
at ; with binary signaling (i.e., BPSK), where

and .
The goal of the receiver is to accurately estimate the

primary and secondary sequences and using
estimates of the channel coefficient vectors and

(where . These
coefficients are either known (for JMAPSD and JMLSE) or
blindly estimated (by JBMAPSD).

III. JOINT ML SEQUENCE ESTIMATION

In the single-channel scenario, the aim of MLSE is to
determine the one sequence
out of all possible transmitted symbol sequences such that

, where
is the received sequence. When the additive

noise components in (2) are independent and Gaussian, the
above condition can be replaced by a Euclidean distance
criterion given by (for -spaced MLSE)

(4)

where are the signal estimates generated fromusing
the known channel coefficients. (In -spaced MLSE, each
term in the summation is replaced by two similar terms, one
for each sample per symbol.) For the joint detection of two
cochannel signals, the objective of JMLSE [19], [20] is to
determine thepair of sequences that minimize
the sum of squared errors defined by the error (likelihood)
sequence , as illustrated in Fig. 2. When the channel has a
finite impulse response (FIR), the Viterbi algorithm (VA) is a
practical way of implementing optimal (single-channel) MLSE
[24]. Assuming a channel memory of symbols, the VA
maintains a decoding trellis with nodes or states (where

is the size of the source alphabet) and an equal number of
survivor sequences. Each state is a particular subsequence of

previously transmitted symbols
from which the present symbol could be obtained. For

example, the th state1 is defined by
. It is evident that can transition to

possible states at time and that it could have been reached
from different states at time . The VA decisions are

1Although a state is based onL previously transmitted symbols, we use
L�1 in the superscript ofdk�1;L�1i to be consistent with the notation used
for the JMAPSD algorithm described in the next section.

Fig. 2. Joint ML sequence estimation.

usually computed by truncating the survivors after
symbols [24].

The joint VA (JVA) [19], [20], for JMLSE is implemented
with a method very similar to that of the standard VA. A joint

state is defined by ap-

pending the primary and secondary
states. Hence, the number of states required to implement the
optimal JVA is . Observe that, in this case, each joint
state at time can transition to states at time
and can be reached by the same number of states from time

. For high-order signal constellations (e.g., 16-PSK or 64-
QAM), complexity reduction techniques originally developed
for single-channel MLSE, such as reduced-state sequence
estimation (RSSE) [25], may be employed for JMLSE. A
discussion of this approach is beyond the scope of this paper,
but we have found that RSSE is beneficial at least for the case
of minimum-phase channels.

IV. JOINT MAP SYMBOL DETECTION

The MAP symbol-by-symbol decoding scheme [18] mini-
mizes the probability of a symbol error, i.e.,

(5)

and can provide more reliable decisions than the VA for the
same decoding delay. This can be understood from the fact that
the probability of symbol detection is equal to the sum of all
the sequence probabilities containing that symbol,
i.e.,

(6)

Symbol-error-rate (SER) curves of theblind MAPSD al-
gorithm and the blind VA for QPSK signals and fast-fading
ISI channels were investigated in [22]. In those simulations,
we found that for a decoding delay equal to the memory of
the ISI channel (we can consider this as being equivalent
to symbol-by-symbol decoding), the blind MAPSD algorithm
is superior to the blind VA by nearly 0.5 dB. Thus, we
expect that the blind-adaptive JMAPSD algorithm (discussed
in Section V) can have an error rate performance superior to
that of blind-adaptive JMLSE (based on the VA). However, for
knowntime-invariant channels, the advantage of the (nonblind)
MAPSD algorithm over the VA is quite small (about 0.1
dB—see [22]). Moreover, once the decoding delay of the VA is
increased, its performance approaches that of optimal MLSE,
and is superior to that of the symbol-by-symbol MAP detector.
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Noting that is proportional to thea posteriori
MLSE metric , the VA saves only the metrics of the
survivor sequences, and not of all the sequences containing

. On the other hand, the MAPSD algorithm maintains
a MAP metric for every subsequenceof length

defined by . Motivated
by the FIR nature of the channel, (5) can be rewritten as

(7)

where the subsequences are such that .
The recursion to calculate theth MAP metric in the above
summations is given by

(8)

where the normalization constant . The
summation in (8) is performed over the MAP metrics of all
possible subsequences at time from which

could have been obtained. The likelihood
(which equals when the channel is known) is
Gaussian, i.e.,

(9)

where
is the data (row) vector, and

is the coefficient (column) vector. The
corresponding detection algorithm was first derived in [18]
for known channels, and was extended to blind estimation for
unknown channels in [26], [27].

The complexity of the single-channel MAPSD algorithm is
roughly the same order as that of MLSE. (Note that although
MLSE maintains states, it calculates the same number
of likelihoods as does MAPSD with subsequences.)
A suboptimal MAP rule was introduced in [26] to make a
decision on the th symbol (at time ) according to

where

(10)

The complexity of the single-channel MAPSD algorithm
can be reduced by introducing decision feedback. In this
MAP/decision-feedback (MAP/DF) approach [28], [29], a DF
filter of length is cascaded with the MAPSD
algorithm to truncate the effective channel memory. The size
of the MAPSD section is reduced accordingly to
states. Hence, a performance-complexity tradeoff is possible,
ranging from that of the full MAP estimator to the
ideal DFE .2 The MAP/DF approach is similar to
the delayed decision-feedback sequence estimator (DDFSE)

2The ideal DFE refers to anL-tap feedback filter which cancels the
postcursor ISI; there is no feedforward section to handle the precursor ISI.

Fig. 3. Two-stage JMAPSD algorithm.

presented in [30] for the VA. The main difference is that a
single feedback filter may be used in the MAPSD algorithm,
whereas in DDFSE, each state in the VA trellis employs
feedback.

For cochannel symbol detection, an optimal JMAPSD al-
gorithm (of complexity ) may be obtained by
modifying the single-channel MAPSD algorithm using joint
subsequences, i.e., . This single-stage
JMAPSD algorithm should provide a BER performance com-
parable to that of JMLSE for the same decoding delay.
However, it is preferable to use the JVA when longer decoding
delays can be tolerated because the complexity of JMAPSD
grows exponentially with the decoding delay, while it is
essentially linear for the JVA (once the trellis is constructed).
Because of this complexity, in the computer simulations of
Section VI, we compare the algorithms to single-stage JMLSE
in place of single-stage JMAPSD.

A computational advantage is obtained when the single-
stage JMAPSD algorithm is reconfigured as a (suboptimal)
two-stagealgorithm, as illustrated in Fig. 3. The subsequence
decisions of the primary MAP stage, denoted by and
corresponding to the largest probability metric [given below
in (13)], are used to compute the primary signal estimate

(11)

yielding the residual error signal . This
error becomes the input of the second MAP stage, which
models the subsequences of the secondary channel.
Hence, the complexity of two-stage JMAPSD is only on the
order of . The assumption here is that the
SIR is sufficiently large such that the primary MAP metrics
converge; thus, cancellation of the primary signal component
is nearly complete, and contains only the secondary
signal component (plus additive noise). Note that we could also
derive a two-stage JMLSE implementation utilizing RSSE.
However, since low-delay decisions would be required at the
output of the first stage, JMAPSD is preferable because it can
yield a lower error rate than the VA for the same delay.

A feedback filter may be used to subtract a partial esti-
mate of the secondary signal from the input. As a result,
the two-stage JMAPSD algorithm will perform satisfactorily
even under low-to-medium SIR conditions. This secondary
feedback filter (SFF) is also shown in Fig. 3 where the partial
estimate is evaluated using thelast suboptimal
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decisions of [i.e., using all the suboptimal decisions
at time with the exception of the MAP symbol decision

] as follows

(12)

Hence, is an estimate of the secondary interference
from all previous secondary symbols excluding the current
symbol . The residual signal
becomes the input to the primary stage.

The following remarks can be made regarding this two-stage
scheme. 1) Although the SFF may introduce some error prop-
agation due to the decision feedback, for low SIR simulations
we have found a significant improvement in performance.3

2) Due to the uncancelled ISI contribution from the current
secondary symbol (even when the decisions entering
the computation of are correct), the residual of
the primary MAP stage conditioned on the input sequence is
not Gaussian in general.4 However, under low-SNR and/or
high-SIR conditions, the effect of this additional term on the
overall error-rate performance is likely to be minimal. Thus,
the conditional likelihoods in the primary MAP stage are
approximated by Gaussian functions in order to employ the
MAPSD approach. Note that some performance degradation
can be expected at low-SIR conditions if the noise power

is reduced. This anomalous behavior at high SNR’s has
been observed in computer simulations, and is found to be
dependent on the uncancelled ISI term of the
secondary channel.

The MAP metrics in each stage are updated independently
as in the single-channel MAPSD algorithm, i.e.,

(13)

where is the input to the th MAP stage as defined ear-
lier, and the conditional likelihood is assumed to be Gaussian,
i.e.,

(14)

where is the signal estimate assuming was sent,
and depends on the noise power. The summation in (13)
is similar to that in (8).

The overall two-stage JMAPSD is summarized in Table I
using the -spaced notation. For a -spaced implementa-
tion, note that the likelihood function in (9) will be a product
of the even and odd sample likelihoods as follows

(15)

3It should be mentioned that this two-stage JMAPSD structure (also
described in [20]) is slightly different from the one proposed in [19], but
is exactly equivalent in function.

4It is not Gaussian even if the secondary signal is completely cancelled
(except for the current secondary symbold2(k), as mentioned above).

where
[similar to (3)]. Referring to (11) and (12), note that for the
primary MAP stage,

, while for the secondary MAP stage,
. In general, it may be argued

that, depending on the ISI shaping and random timing jitter
introduced by the channels, either the odd or the even sample is
bound to capture more of the received signal power. Thus, the
corresponding likelihood term in (15) may be more reliable
(i.e., it may be closer to the true likelihood obtained in the
absence of timing offset). However, both the even and odd
sample likelihoods in (15) are given the same weight. It may
be worthwhile to see if any BER performance advantage
is obtained by using some other weighting scheme, but we
have not investigated this. In computer simulations, we have
achieved good performance by equally employing the even
and odd samples.

V. JOINT BLIND MAPSD (JBMAPSD) ALGORITHM

The JBMAPSD algorithm is also based on the two-stage
structure in Fig. 3 where each stage, in addition to demodu-
lating one cochannel signal, also estimates the corresponding
channel coefficients. The adaptation algorithm for each stage
resembles the -spaced, single-channel blind MAPSD al-
gorithm described in [26], [27]. In this blind algorithm, a
conditional channel estimate is maintained for each
subsequence (of length ). Once the the MAP metrics

are updated, “unconditional” estimates are obtained
from the appropriate predecessor metrics and conditional esti-
mates [22], [27]. We extend each of these steps to the two-stage
JBMAPSD algorithm.

The original single-channel blind MAPSD algorithm as-
sumed a first-order autoregressive model for the channel
coefficients, and incorporated a Kalman filter to update the
channel and error covariance estimates. In order to reduce
the complexity, simpler stochastic gradient adaptation was
employed in [27] resulting in LMS (least-mean-square) [31]
update rules. The LMS update may be viewed as a stochastic
gradient descent on a conditional cost function; a direct
extension of this method yields the single-stage JBMAPSD
algorithm with the conditional cost function given by

(16)

where is the joint subsequence, and

is the joint channel esti-
mate. The superscript indicates that the resulting algorithm
is optimal (in the LMS sense) because the minimization is done
jointly over both coefficient vectors, yielding a single-stage
JBMAPSD algorithm.
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TABLE I
SUMMARY OF THE TWO-STAGE JMAPSD ALGORITHM.

On the other hand, for the two-stage configuration in Fig. 3,
two separate cost functions are considered:

(17)

where ,

(18)

which is based on the channel estimates from the previ-
ous instant. Decoupling of the primary and secondary cost
functions is clearly suboptimum (hence the superscript).
Because and are not directly available, they must
be approximated using the previous subsequence decisions.

Referring to Fig. 3 and assuming that the primary decisions
are correct, is replaced by

(19)

where is determined from
the subsequence and channel estimates corresponding to the
largest MAP metric. In a similar manner, is replaced by

(20)

where and are also determined by the
largest MAP metric. Thus, in addition to the partial secondary
estimate produced by the SFF in Fig. 3, the decision
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obtained after updating the secondary MAP metrics
is also fed back and weighted by the first coefficient of

. In this way, the accuracy of the gradient value

entering the computation of is enhanced.
Using the above assumptions, namely, and

, the conditional gradient estimates for theth
MAP stage are given by

(21)

yielding the following LMS update for theth conditional
channel estimate in the th stage

(22)

The corresponding unconditional estimate is

(23)

These summations are defined in a manner similar to that in
(8).

When -spaced estimators are employed, separate cost
functions are defined for the even sample and the odd
sample . For the primary MAP stage, the even and
odd cost functions are given by [analogous to in (17)]

(24)

and the corresponding even and odd conditional gradients are
(analogous to (21) for )

(25)

for , and . Observe that, although
the error terms for , are different, the even and odd
conditional updates above use the same data vector .
Finally, the conditional likelihood computation in (14) is
modified for the primary MAP stage to be

(26)

because the , are assumed to
be mutually uncorrelated, and where

. The form of the
unconditional update remains unchanged from (23), except
that the even and odd estimates can be computed jointly

TABLE II
SUMMARY OF THE TWO-STAGE JBMAPSD ALGORITHM.

by stacking them together (since they have the same MAP
metrics).

The corresponding expressions for the secondary MAP
stage are similar to those in (24)–(26). Complexity reduction
techniques, such as the decision-feedback scheme in [29] or
metric pruning [22], may be employed by this blind algorithm.
The two-stage joint blind MAPSD algorithm is summarized
in Table II using the -spaced notation. Note that we could
also derive a two-stage joint estimation algorithm based on
the blind MLSE/VA approaches in [32], [33]. However, as
discussed previously for the nonblind JMAPSD algorithm,
low-delay decisions are required by the second stage so that
the MAP approach is preferred (as it can yield a lower error
rate for low-decision delays).

VI. COMPUTER SIMULATIONS

For binary signaling (BPSK), the primary and secondary
BER’s of the simulated algorithms were computed for the
channel model in (2). The coefficients in Table III were used
in the first set of simulations; their frequency responses are
shown in Fig. 4. The optimal -state
JVA (JMLSE) was compared with the suboptimal two-stage
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(a)

(b)

Fig. 4. T=2-spaced channels. (a) Magnitude response. (b) Phase response.

JMAPSD algorithm where and
refer to the number of primary channel coefficients

modeled by the MAP and DF sections, respectively (similar
definitions apply for the secondary channel).5 (For ex-
ample, JMAPSD is a -state MAP section
cascaded with a one-symbol DF filter for the primary channel,
and a 16-state MAP section cascaded with a three-symbol DF
filter for the secondary channel.)

The effect of the SFF at various SIR’s on the two-
stage JMAPSD algorithm is illustrated in Fig. 5
for dB. Notice that for dB, the SFF
provides more than an order of magnitude improvement in
the error rate performance. From the BER curves in Fig. 6(a)
for dB, note that JMLSE provides the best error rate
performance. However, observe from Fig. 6(b) (
dB) that the two-stage JMAPSD algorithm (which includes
the SFF) provides nearly the same performance as JMLSE
(or, equivalently, the single-stage JMAPSD). The MAP/DF
approach used in JMAPSD allows for even more
computational savings, but at the cost of some performance
degradation.

The error rate performance of a simple two-stage joint
decision-feedback detector (JDFD) is also included in Fig. 6
for comparison purposes. This JDFD is a direct extension of
the single-channel ideal DFE to the cochannel measurement
model (i.e., there are no feedforward taps and only
feedback taps to cancel the postcursor ISI of a channel with

5As mentioned previously, we will compare the algorithms to single-stage
JMLSE since, for low-delay decisions, the performance of JMLSE is similar
to that of JMAPSD, and it has a lower complexity.

TABLE III
T=2-SPACED CHANNEL COEFFICIENTS

Fig. 5. Effect of SFF on the BER’s of two-stage JMAPSD.

coefficients). It can be seen that JMAPSD(0,6,0,6) corresponds
to this JDFD structure, where the MAP section is absent and
the DF section in each stage is a six-tap FIR filter. At the lower
SIR, the JDFD requires about 35 dB more SNR to achieve
the same BER as the JMAPSD algorithm, and at least 10 dB
more at the higher SIR.

The various joint detectors were also compared for an
artificial near minimum-phase channel with the coefficients in
Table IV. The corresponding BER curves are shown in Fig. 7
for two values of SIR ( and dB). Since the channels have
a span of only seconds (i.e., eight -spaced coefficients),

states are required to implement JVA/JMLSE, while
the two-stage JMAPSD algorithm has states in each of
its stages. Since both the primary and secondary channels have
most of their ISI contribution from the first two symbols (i.e.,
from the first four -spaced coefficients), JMAPSD(2, 2, 2,
2) was also implemented. From these results, the following
observations can be made. 1) For low SIR’s, JMLSE yields
the best BER performance; observe, however, that for SIR

dB in Fig. 7(b), the BER curves of JMAPSD(4, 0, 4,
0) are virtually indistinguishable from those of JMLSE. 2)
As mentioned earlier, the two-stage JMAPSD structure may
suffer from uncancelled secondary power due to the symbol
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(a)

(b)

Fig. 6. BER’s of the joint detectors for the channels in Table III. (a)SIR = 0

dB. (b) SIR = 10 dB.

TABLE IV
T=2-SPACED COEFFICIENTS OF THENEAR MINIMUM -PHASE CHANNELS.

. This is evident in Fig. 7(a) where, at high SNR’s,
its performance is slightly poorer than that of the simpler
JDFD [i.e., JMAPSD(0, 6, 0, 6)]. 3) The JDFD algorithm
can yield adequate performance under such minimum-phase
channel conditions (say, within 4–5 dB of the more complex
JMLSE and JMAPSD structures).

The joint blind MAP symbol detector (JBMAPSD) was
simulated for the artificial channel coefficients listed in Table
V. The even and odd filter coefficients were updated using
the corresponding gradients in (25). In order to reduce the
misadjustment error at convergence, the step size in (22)
was allowed to decay at a rate of for the primary
stage, i.e., with ; for the secondary

(a)

(b)

Fig. 7. BER’s for the near minimum phase channels in Table IV. (a)
SIR = 0 dB. (b) SIR = 10 dB.

TABLE V
T=2-SPACED CHANNEL COEFFICIENTS FOR THEJBMAPSD ALGORITHM

stage, and . Because the algorithm was
studied for reasonably large SIR’s (i.e., low secondary signal
powers), a higher gain was chosen for the secondary stage to
improve its convergence rate.

Fig. 8(a) and (b) shows the evolution of the probability
metrics of the primary and secondary MAP stages for one run
of the algorithm with SNR 25 dB and SIR 15 dB. Since
the channels have six -spaced coefficients, there were

metrics. Observe that, in the primary MAP stage, one
of the metrics converges to unity in less than 100 iterations.
Although the metric trajectories are noisier in the secondary
MAP stage, there is still only one metric that dominates the
rest. Fig. 8(c) shows the trajectories for the corresponding
ensemble-averaged coefficient errors. These were generated
by averaging the squared error between the actual channel
and the estimate corresponding to the largest metric

at each iteration [i.e., ].
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(a) (b)

(c) (d)

Fig. 8. Performance results of the JBMAPSD algorithm for the channels in Table V. (a) Primary metric trajectories. (b) Secondary metric trajectories.
(c) Coefficient error trajectories. (d) BER curves.

Finally, BER curves are shown in Fig. 8(d) with results
as expected. For higher SNR’s (not shown), the curves tend
to level off with a lower limit determined by the error rate
achieved without additive noise. There is a difference of 12–13
dB between the primary and secondary curves. Hence, for
the same relative SNR’s (e.g., primary error rate at SNR10
dB and secondary error rate at SNR10 SIR 25 dB), the
secondary stage has a slightly better performance. This is
expected because the converged primary coefficients yield
almost complete cancellation of the primary signal from the
input to the secondary stage of the algorithm, whereas the
effect of the most recent secondary symbol is not cancelled
from the primary stage input. Another reason for this is that the
secondary decisions are less reliable when the primary SNR

10 dB since the effective SNR for the secondary signal
10 15 5 dB.

In summary, we expect the performance of the two-stage
JMAPSD algorithm to degrade for the following scenarios:
1) at low SNR when the SIR is close to 0 dB, and 2) when

of the secondary channel (corresponding to the weaker
signal) is large relative to the other coefficients. In addition,
the two-stage blind algorithm JBMAPSD will not converge
satisfactorily at low SIR’s, especially if the secondary channel
coefficients are similar to those of the primary channel (e.g.,
if they are nearly scaled versions of each other).

VII. CONCLUSION

Nonlinear techniques for the joint estimation of narrow-
band cochannel signals have been presented. These techniques
use a single-input receiver which directly provides Nyquist-

rate samples to the detector, obviating the need for whitening
matched filters. When the channel coefficients are known,
single-stage JMAPSD and JMLSE are optimal techniques
providing the lowest possible BER’s. However, for high
SIR conditions, the suboptimal two-stage JMAPSD algorithm
can provide a performance approaching that of (single-stage)
JMLSE, but at a much lower complexity.

We have also presented a blind adaptive algorithm for
the recovery of cochannel data streams in the presence of
ISI. This joint blind MAP symbol detection (JBMAPSD)
algorithm also employs a single-input receiver with a two-
stage structure where the first stage estimates the strongest
signal and the second stage estimates the weaker signal. The
corresponding channel coefficients are estimated using LMS
gradient updates. By employing feedback of past decisions,
the effect of cochannel interference is reduced at the input to
each stage.

Simulation results for a primary signal and one cochannel
interferer demonstrate the rapid convergence properties that
are possible with the two-stage JBMAPSD algorithm. The
BER performance curves indicate that the scheme performs
well for relatively high SIR’s. However, the overall per-
formance of the blind algorithm depends on the condition
that the primary channel coefficients converge, despite some
residual interference from the secondary signal. Hence, the
two-stage implementation may not perform well for low SIR’s,
whereas the single-stage JBMAPSD (or blind JMLSE) algo-
rithm should be able to provide better performance (depending
on the specific channels encountered).
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In the presence of multiple cochannel signals, a multistage
JMAPSD (and JBMAPSD) algorithm may be derived by a
direct extension of this work. Unlike linear MMSE-based
receivers, the nonlinear detectors proposed here are sensitive
only to the relative signal powers of the cochannel sources.
Three or more cochannel signals could be detected in the
same bandwidth, provided their signal powers are not equal.
However, it is likely that the effect of cascading several MAP
sections will lead to a higher incidence of error propagation
due to the SFF and decision feedback. Also, the corresponding
single-stage algorithm for multiple cochannel signals may
be computationally expensive. As a result, these algorithms
may be better suited for cochannel interference mitigation in
mobile radio systems employing frequency reuse where there
is usually only one significant interferer, rather than in digital
subscriber loop applications where there are many cochannel
sources.
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