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Abstract-- A new blind equalization algorithm based on a 
suboptimum Bayesian symbol-by-symbol detector is pre- 
sented. It is first shown that  t he  maximum a poster ior i  (MAP) 
sequence probabilities can be approximated using the  inno- 
vations liikelihoods generated by a parallel bank of Kalman 
filters. These filters generate a set of channel estimates con- 
ditioned on t h e  possible symbol subsequences contributing 
to the  intersymbol interference. T h e  conditional esitimates 
and M A P  symbol metrics a re  then combined using a sub- 
optimum Bayesian formula, Two methods are considered 
to  reduce the  computationa! complexity of the  algorithm. 
First, the  technique of reduced-state sequence estimation 
is adopted to reduce the  number of symbol subsequences 
considered in the  channel estimation process and hence the 
number of parallel filters required. Second, it is shown tha t  
the  Kalnnan filters can b e  replaced by simpler leasbmean- 
square (ILMS) adaptive filters. A computational Complexity 
analysis of t h e  LMS Bayesian equalizer demonstrates that  
its imptcmentation in parallel programmable digital signal 
processing devices is feasible at 16 kbps. The  performance of 
the resullting algorithms i s  evaluated through bit-error-rate 
simulations, which a re  compared to the  performance bounds 
of the  maximum-likelihood sequence estimator. It in shown 
that the  Kalman filter and LMS-based algorithms achieve 
blind start-up and  rapid convergence (typically within 200 
iterations) for both BPSK and QPSK modulation formats. 

Keywords- Blind equalization, Kalman filtering, Bayesian 
equalization, channel estimation 

I. INTRODUCTION 

Blind equalization algorithms attempt to determine the 
transmitted symbol sequence in the presence of intersymbol 
interference (ISI) without prior khowledge of the channel 
impulse response. Most efforts in the development of blind 
equalizers have focused on “property restoral” algorithms 
in whiclh a nonlinear function of the equalizer output is 
forced to a constant value [1],[2],[3],[4]. For example, in 
the constant modulus algorithm (CMA) [3] the error be- 
tween the magnitude (modulus) of the equalizer output 
and a constant term is recursively minimized. The result- 
ing gradient-descent method has a computational complex- 
ity similar to that of the LMS algorithm. The makivation 
for these methods is that by restoring the modulus of the 
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received signal, the channel impulse response is implicitly 
estimated and the IS1 is removed. Since the cost functions 
of these algorithms are independent of the transmitted d a  
ta sequence, they are capable of blind start-up. 

While CMA-type algorithms have the advantage of com- 
putational simplicity, their convergence cannot be guaran- 
teed. Specifically, it has been shown that CMA may con- 
verge to undesired local minima [5],  and furthermore, its 
convergence rate is extremely slow compared to training- 
based equalizer algorithms. For wide bandwidth appli- 
cations, such as digital microwave radio or high-speed 
switched telecommunication networks, property-restoral 
blind equalization algorithms may be the only alternative, 
despite the aforementioned drawbacks. However, with the 
advent of programmable digital signal processing (DSP) 
devices and special-purpose VLSI, more sophisticated blind 
equalization algorithms should be considered, especially for 
relatively narrowband systems such as HF digital radio 
and voiceband modems. The algorithms presented here, 
although seemingly complex, have a parallel structure that 
may prove to be well-suited for programmable DSP imple- 
mentations and such narrowband communication systems. 

In this paper, we present a new set of blind equalization 
algorithms that are approximations to the optimum MAP 
symbol-by-symbol detector for a priori unknown channels. 
The structure of the optimum MAP sequence estimator’is 
first discussed, and it is shown that the sequence probabil- 
ities can be computed using the innovations derived from a 
bank of Kalman filters. The exact MAP sequence estima- 
tor requires a separate channel estimate for each possible 
symbol sequence and, thus, its computational complexity 
grows exponentially with time. To overcome this disad- 
vantage, we develop a suboptimum Bayesian recursion for 
the MAP subsequence probabilities which maintains sep- 
arate channel estimates for each of MNbtl  subsequences, 
where M is the symbol alphabet size and Nb + 1 is the 
estimated length of the channel impulse response. The 
symbol-by-symbol detector is then obtained by summing 
the appropriate MAP subsequence metrics, and the result- 
ing algorithm consists of a bank of Kalman filters in which 
each filter maintains a channel estimate conditioned on one 
of the MNb+l subsequences. 

In order to reduce the complexity of this method, the 
technique of reduced-state sequence estimation (RSSE) [6] 
is employed. In RSSE, the MNb+’ subsequences are grouped 
into a coarser partition of N 5 MNbtl subsets, and the 
number of Kalman channel estimators is corresponding- 
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ly reduced. As a second simplification, the Kalman esti- 
mators are replaced by simpler LMS adaptive filters, thus 
yielding a set of algorithms which vary in complexity from a 
decision-feedback equalizer to the M N b + '  parallel Kalman 
filter structure. A general analysis of the computational 
complexity of the LMS Bayesian equalizer is provided to 
evaluate its suitability for programmable DSP implemen- 
tations. 

The paper is organized as follows. The Bayesian recur- 
sion for the symbol probabilities is discussed in Section I1 
and the suboptimum parallel Kalman estimator is derived 
in Section 111. The RSSE version of the blind equalization 
algorithm is presented in Section IV and the LMS imple- 
mentation is developed in Section V. The computational 
complexity analysis is presented in Section VI. Computer 
simulations and conclusions then follow in Sections VI1 and 
VIIS. 

11. DEVELOPMENT OF THE O P T I M U M  

BLIND EQUALIZATION ALGORITHM 

The following discrete-time channel and signal model is 
assumed 

N b  

r ( k )  = b,(k)d(k - m) + n ( k )  (1) 
m=O 

where ~ ( k )  is the output of a matched filter at time k ,  
d(k) is the current transmitted symbol, and { b m ( k ) }  rep- 
resent the time-varying channel coefficients. For BPSK, 
d(k) is real, taking on the values f l ,  and for QPSK, d(k) 
is complex with values {fl, ki}. The channel coefficients 
{b,(k)} represent the convolution of the actual IS1 channel 
impulse response with that of a prewhitening filter, which is 
included to ensure that the additive noise samples { n ( k ) }  
are uncorrelated. These noise samples are drawn from a 
complex Gaussian distribution with zero mean and vari- 
ance ua. Note that perfect synchronization, or equivalent- 
ly, sampling of the matched filter output at the optimhm 
times is implicitly assumed in (1). In the development of 
the Kalman filter channel estimator, it is assumed that the 
coefficients {b,(k)} evolve according to the following com- 
plex Gaussian autoregressive (AR) process model: 

b(k + 1) = Fb(k) + w(k) (2) 

where b(k)  is the coefficient (column) vector defined by 

b(k)= [bO(k),b~(k)l"',bNb(k)]T 7 (3) 

F E C ( N b + l ) x ( N b + l )  is the one-step transition matrix, and 
w(k) E C N b + l  is a zero-mean circular white Gaussian noise 
vector with covariance matrix Q E C ( N b + l ) X ( N b f l ) .  

For convenience in the derivation of the optimum MAP 
sequence estimator and blind equalizer, the following cu- 
mulative sequences are defined. The cumulative measure- 
ment sequence r' represents the matched filter samples col- 
lected up to time k ,  and is given by 

Tk = {?- ( le ) ,  T ( k  - 1), . . . , r(O)} . (4) 

A cumulative data sequence is similarly defined as 

dz-{ ' - d, ( k),dz(k - 11, 1 ddO)} (5) 

for the ith of Mk+' possible sequences. Note that both 
of these sequences contain all samples. For the subopti- 
mum Bayesian equalizer described in the next section, we 
consider only subsets of the full sequence df . 

The optimum MAP sequence estimator is now reviewed 
for the assumed channel and signal models. The corre- 
sponding conditional probabilities can be written in the 
following recursive form: 

for i = 1 , 2 ,  . . . , M"'~ where p(d f  represents the prob- 
ability of the it* possible data sequence given cumulative 
measurements r', and c is a normalization constant. Fol- 
lowing the analysis in [7], it can be shown that the likeli- 
hood p(r(k) /cZf ,  r k - l )  is determined by the Kalman filter 
estimate as follows: 

where N ( z ;  m,, u:) denotes a univariate circular Gaussian 
density with mean m, and variance u:. The estimated 
signal ? i ( k / k -  1) is computed from the conditional channel 
estimates according to 

where 6i ,m(k lk- l )  is exactly equal to the conditional mean 
of b m ( k ) ,  under the AR process model in (2) when condi- 
tioned on data sequence df , Le., 

This estimate is generated in a straightforward manner by 
Kalman filter equations similar to those to be discussed in 
Section 111. 

From (6) and (7), it is seen that the optimum MAP 
sequence estimator requires a bank of M k + l  Kalman fil- 
ter channel estimators, each conditioned on a different se- 
quence d:. The MAP probabilities of the sequences are 
then obtained as a product of the corresponding likeli- 
hoods. Unfortunately, the number of channel estimators 
required increases exponentially with time so that the op- 
timum sequence estimator is clearly impractical. In [7], a 
suboptimal approximation to the MAP estimator was pro- 
posed in which conditional channel estimates were propa- 
gated only for the survivor sequences in a Viterbi algorithm 
(VA). Thus, the number of channel estimators was fixed 
at the number of states in the trellis, which in turn was 
determined by the length of the channel impulse response. 
While the modified VA is computationally feasible for some 
low-rate data applications, we seek a further simplifica- 
tion to the optimum MAP sequence estimator discussed 
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here that does not require accumulation of the survivor se- 
quences. ‘The resulting blind equalization algorithm, while 
approximating the MAP estimator, also resembles a paral- 
lel decision-feedback equalizer structure, and hence is more 
computationally attractive. 

111. BLIND EQUALIZATION USING PARALLEL 
KALMAN CHANNEL ESTIMATORS 

The suboptimum Bayesian equalizer and symbol-by- 
symbol detector is now derived. Observe that the prob- 
ability density function p ( b ( k ) l d q ,  r k - l )  is exactly Gauss- 
ian with ;5 mean and covariance determined by a Kalman 
channel estimator conditioned on the entire sequence df . 
Consider conditioning instead on the following subsequence: 

df’lVb = {di(k),di(k - 1), . . . , di (k  - N b ) } ,  (10) 

which has the same number of terms as the clhannel 
impulse response. The corresponding density function 
p ( b ( k ) l d ; l N b ,  r k - l )  is not a Gaussian distribution, but is 
instead a weighted sum of Gaussian terms, as follows: 

where thse weights are given by the MAP sequence probai 
bilities. In order to simplify the recursion in (6), we will 
condition on the subsequence dfINb and approximate the 
above density for b ( k )  with the following unimodal func- 
tion: 

p ( b ( k ) l d f I N b ,  rb-’) % N ( b ( k ) ; b i ( k l k  - l ) ,Pi(klk - 1)) 

where Ni(x; mx, Px) represents a circular multivariate Ga- 
ussian density with mean vector mx and covariance matrix 
Px. It is next shown that the approximation in (12:) yields 
a blind equalizer based on a parallel Kalman filter bank; 
i.e., bi (k lk  - 1) and Pi(k(k - 1) are updated by at set of 
Kalman filter equations. 

The MAP estimate of subsequence dtINb is determined 
by 

(12) 

p ( d y y r k )  = (13) 

where c is a normalization constant. In the above sum, 
subsequence d;- l rNb E dfPNb implies that the first i v b  sym- 
bols in subsequence d:-17Nb are identical to the last Nb 
symbols in d:lNb. For example, with Nb = 3 and as- 
suming BPSK modulation, if d;-llNb - - {-1, 1, l ,-.l} and 
dfjNb = {l ,- l ,  l , l} ,  then d:-l’Nb E d f r N b .  We empha- 
size that, (13) is exact since it follows directly from Bayes’ 

formula. Furthermore] under approximation (12), the like- 
lihood p(r (k ) ld : lNb ,  r k - l )  is Gaussian with a mean given 
in terms of ba(klk - I), i.e., 

p ( r ( k ) l d f , N b , r t - l )  = N ( r ( k ) ;  f q k l k  - l ) ,af(klk - 1)). 
(14) 

The mean Fi(klk - 1) and innovations variance c$(klk - 1) 
are computed as 

?i(klk - 1) = hi(k)bi(klk - l), (15) 

which is the same as (8), and 

c!(klk - 1) = hi(k)Pi(klk - l )hp(k)  + CW (16) 

where hi(k) is the row vector 

The one-step estimate b i ( k  + Ilk) is defined by the con- 
ditional mean 

b i ( k  + Ilk) = E [ b ( k  + l ) ( d f ” ’ , r k ]  (18) 

which follows from (9) such that the subsequence d f r N b  
is substituted for the full sequence d f .  Thus, this esti- 
mate and the covariance Pi (k+ l lk )  can be computed from 
the tzme updates of the Kalman filter. The derivation 
of these quantities is somewhat involved, however, since 
p(b(k + l)ldf+l”blrk) is a Gaussian sum even though 
we have approximated p ( b ( k ) l d f ’ N b l  r k - l )  as a Gaussian 
density in (12). As shown in Appendix A for the AR 
process model in (a), the time-updated estimate and co- 
variance are determined from the measurement-updated 
quantities bi (k lk )  and Pi(klk), respectively, that specify 
p ( b ( k ) l d f l N b  , rk), as follows: 

and 

where 
vj,i(k) = p i ( k  + l ( k )  - Fbj(klk)]  

determines the outer-product term in (20). 
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Finally, the measurement update is defined as 

b i ( k l k )  = E [b(k)ld:"b,rk] , (22) 

which is conditioned on the subsequence d:lNb as in (18). 
The corresponding measurement updates are determined 
from the Kalman filter equations in a straightforward man- 
ner; these are given by 

and 

Pi(klk  - l ) h f ( k ) h i ( k )  Pi (k lk  - 1). [I- a?(klk - 1) 1 
The structure o€ the blind equalizer is now evident from 

(13) and the Kalman measurement updates in (23) and 
(24). For each subsequence d;-l ,Nb, the a postenorzproba 
bility ~ ( d , k - ' > ~ ~  Irk-') is assumed to be available. Likewise, 
for each new subsequence d f ' N b ,  the conditional channel e s  
timate b8(klk - 1) is also available. A conditional Kalman 
filter channel estimate is then computed for each possible 
subsequence, and the MAP probability of the subsequence 
is updated using the resulting innovations likelihood. The 
overall algorithm is summarized in Table 1. The Bayesian 
equalizer structure is thus seen to  consist of a bank of 
MNb+l  conditional channel estimators. The symbol de- 
cisions are made using the MAP probability metrics them- 
selves, described below. 

The optimum decision' on symbol d ( t  - Nb) can be per- 
formed by computing the following marginal probability 
for each possible symbol d ( t  - Nb): 

(25) 
In practice, we have found that only one of the metrics 
p(dfJNb1rk) converges near unity, so that one term con- 
tributes substantially to the summation in (25). The sub- 
optimal decision used €or the results presented later in this 
paper is based on the subsequence with the largest metric, 
as follows: 

J f l N b  = arg dk"b max p ( d f J N b  Irk) (26) 

(27) J ( t  - Nb) = & ( k  - N*) .  

We emphasize that both the Bayesian equalizer devel- 
oped here and the algorithm of Abend and Fritchman [8] 
are symbol-by-symbol detectors, and hence minimize the 
probability of a symbolerror. In contrast, the better known 

'It  should be noted tha t  this MAP decision rule, combined with a 
Bayesian formula similar to  (13) ,  was also used in [SI for the  case of a p r i -  
ori known channels. However, [%] did not consider the problem of channel 
estimation and ,  thus,  their  likelihood computation was much simpler than 
in the problem considered here. 

Define Observation Vectors 
h, (k )  = jd, jk).  , . . . $ ( k  - Pa)] 

Compute Conditional Innovations Covariances 
o,'(klk - I )  = h, (k)P, (k lk  - i ) h r ( k )  + uf 

Compute Signal Estimates 
.Vb 

i , ( k l k  - I )  = b,,,(klk - l ] d , ( k  - n) 
"=O 

Update Conditional Measurement Estimates 
1 6 , r k l k )  = 6 , i k I k  - 1) + k , k  - l ,P, jk lk - l ) h r j k ) ( r ( t )  - FL(klk - 1)) 

( 

Update Conditional Error Covariances 

P,(klk - l )hP(k)h.(k)  P,(klk - 11 1 I 
P*(klk) = [I - a ; ( k / k  - 

Update Weighting Probabilities 

Update One-Step Predictions 

Compute Covariance Outer Product Vectors 
v, , , (k)  = [b,(k + i l k )  - Fb,(klk)] 

UDdate One Step Error Covariances 

Table 1. Bayesian Blind Equalization Algorithm 

maximum-likelihood sequence estimation (MLSE) algori- 
thm of Forney [9] minimizes the probability of a sequence 
error. The symbol-by-symbol detector could be obtained 
by summing over all relevant sequence probabilities, but 
the MLSE algorithm maintains only those probabilities 
of the survivor sequences. MLSE is thus not equivalent 
to symbol-by-symbol detection. Hence, the optimal MAP 
symbol-by-symbol detector theoretically should yield a low- 
er bit error rate than the optimum sequence estimator; fur- 
thermore, an upper bound on the MLSE symbol error rate 
should also serve as an upper bound on the performance of 
a symbol-by-symbol detector. 

' 

IV. SIMPLIFIED BLIND EQUALIZATION 
ALGORITHM USING RSSE 

One possible drawback to the algorithm in Table 1 is 
that MNb+i Kalman measurement updates must be com- 
puted at each iteration, where M is the symbol alphabet 
size and Nb + 1 is the length of the channel impulse re- 
sponse. To alleviate this problem, we consider a simplified 
algorithm using the concept of reduced-state sequence esti- 
mation (RSSE), first introduced in [6]. In RSSE, the sym- 
bol subsequences {d: 'Nb}  are grouped into reduced-state 
subsequences,2 denoted here by {D:"b = {Dz(k ) ,Dz (k  - 
l), . . . , Dz(k  - Nb)}}. Each symbol Dz(k  - m) is actually a 

2Although the { D : ' N b }  are not,  strictly speaking, states in a VA trel- 
lis, each Df'lNb corresponds to  an individual Kalman channel estimator, 
and thus a reduction in the  number of symbol subsequences can greatly 
simplify the algorithm 
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D(k) D(k-1) D(k4!) D(k-2) -*- 
Fig. 1. Subsets for lRSSE(421) (QPSK with Nb + 1 = 3). 

subset of the symbols { d i ( k  - m)},  and has dimensionality 
M ,  5 M ,  satisfying M N ~  5 M N ~ - ~  5 . . . 5 Mo 5 hi. For 
example, for the case of QPSK signalling with Nb + 1 = 3, 
we could choose A40 = 4 , M l  = 2, and M2 = 1 (denoted 
by RSSE(M0, M I ,  Mz) ) ,  which results in a dimensionality 
of 8 for tlhe reduced subsequence D;lNb, as opposed to 64 
for the original subsequence d f P N b .  The eight subsets are 
shown in Fig. 1. 

A recursion for the MAP metrics of the reduced-state 
subsequences is derived as follows. For the Ungeirboeck 
partitioning described in [6], the last Nb elements of D:lNb 
are given by a union of the subsequences {D;-’lNb}. Thus, 
we have 

p(D:’Nbljr-k) = (28) 
1 
--p(r( k) 1 0:”” rk-’) p (  Djk-l’Nb Irk-‘), 
C 

{j:Dk-”NbED:’Nb} 
3 

which is ;similar to (13) for the original subsequences. The 
likelihood p(r(k) lDf’Nb,  r“’) cannot be computed exactly 
from the MAP metric of Dk-12Nb alone. As a result, we 
approximate this likelihood using the metric of thle most 
likely subsequence dflNb contained in DfINb, i.e., 

The estimated signal i i ( k l k  - 1) and observation vector 
hi(k) are similar to those in (15) and (17), respectively, as 
follows: 

Nb 

?i(klk - 1) = &,,(klk - l)a,a(k - m) (32) 
m=0 

hi(k) = [B)i(k),  Di(k - l), . . . , Bi(k - Na)].  (33) 
Finally, the required modifications to the rest of the al- 
gorithm in Table l simply involve replacing the original 
subsequences dfVNb with the reduced-state subsequences 
DfjNb. For example, the one-step prediction update for 
the channel estimate becomes 

b i ( k  + Ilk) = (34) 

Again, it should be emphasized that for a proper parti- 
tioning of the symbol subsequences, the last Nb elements 
of D:+lvNb are expressed as a union of the first Nb elements 
of 0,”’”. 

p(r(k)lD:lNb, rk-’) M p ( r ( k ) ) B f ” b ,  r”-’) (29) V. BLIND EQUALIZATION USING PARALLEL 
LMS ADAPTIVE FILTERS where 

@ l N b  = arg max p(r(k)ld;jNb, rk--’). (30) In order to reduce the complexity even further, we pro- 
pose using scalar gradient algorithms for the Kalman fil- 

lar to the LMS algorithm and its normalized forms [lo], 
and they do not require an underlying state-space mod- 
el or any covariance matrix updates. Thus, the algori- 
thm in Table 1 is simplified by approximating all covari- 
ance matrices with a scaled version of the identity matrix: 

dk”b ED: , N b  

The likelihood above, conditioned on the individual se- ter measurement updates. These algorithm are Si&- 

quence c l f , N b ,  can be computed using the ~~l~~~ filter 
one-step predictions according to 

p ( ~ ( k ) l @ ” ~ ,  rk-’) = N(r(k) ;  i i ( k l k  - l), a?(klk .- 1)). 
(31) 
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P, (k l k )  M P,(k jk  - 1) x yI (where y > 0). Furthermore, 
the underlying state-space model is “ignored,” which is eq- 
uivalent to setting the system matrix F equal to the ide- 
ntity matrix, and the process noise covariance Q equal to 
zero. 

We will adopt a slightly different notation for clarity. 
The predicted estimates {b,(k+l lk)} are replaced by {b,(k)) 
and the filtered estimates {b,(klk)} become {b,“(k)}. We 
will refer to {b,(k)} and {b:(k)), respectively, as the un- 
conditional and conditional channel estimates. Fig. 2 
shows the resulting efficient implementation of the LMS 
filter bank Observe that there are N = MNb+l single- 
input, single-output adaptive finite impulse response (FIR) 
filters comprised of the unconditional estimates bt (k  - l), 
i = 1, . . . , MNb+’. The filter inputs are determined by all 
possible subsequences {h,(k)}, and each filter output Pz(k) 
is generated according to  the inner product 

P;(k) = hi(k)b;(k - 1). ( 3 5 )  

Thus, the output of the ith FIR filter corresponds to an 
estimate of the current received symbol r ( k ) ,  assuming that 
the ith subsequence was transmitted (;.e., conditioned on 
the ith subsequence). The filter outputs are then compared 
to the received sample r ( k )  to generate a set of innovations 
or error signals, e i ( k )  = r ( k )  - ~ , ( k ) ,  i = 1,. . . , ~ ~ b + l .  

The conditional innovations variance update in (16) be- 
comes 

(36) 
a!(k) = yh;(k)ha(k) +on, 2 

and the conditional measurement update in (23) reduces 
to 

CY 
b:(k) = b i ( k  - 1) + -hF(k) [r (k)  - Pi(k)] (37) 

a m  

where CY is a constant usually chosen to be 0 < CY < 2 
[lo]. Table 2 outlines the simplified algorithm, which now 
requires only three parameters: (i) the step size CY, (ii) an 
estimate of the noise variance u:, and (iii) the variance 
factor y. 

The measurement updates have the same form as a nor- 
malized version of the LMS algorithm [lo]. It is well known 
that the convergence properties of gradient algorithms are 
sensitive to changes in the power of the input signal. The 
conditional innovations variances {u:(k)} are estimates of 
this power for each of the possible subsequences, and they 
are used in the measurement update to compensate for 
any power variations Thus, it is possible to have a more 
uniform convergence rate over a wide variation of the in- 
put signal power. In this context, the measurement noise 
variance ui  can be viewed as a constant that is included 
primarily to ensure that the measurement update term is 
not exceedingly large when the inner product yh, (k)ha ( k )  
is small. 

From Table 2, we see that the approximate innovations 
variance a:(k) affects not only the measurement updates, 
but also the probability metric updates. However, our 
simulations demonstrate that the overall algorithm per- 
formance is fairly insensitive to variations in a:(k). Fur- 
thermore, the inner product h;(k)hF(k) of the observation 

Define Observation Vectors 
h,(k)= [ d ( k ) , . . . , d ( k -  Nb)] 

Compute Conditional Innovations Variances 
a:(k) = 7h,(k)hp(k) t u n  

Compute Signal Estimates 

2 

Update Conditional Estimates 
b f ( k )  = b t ( k  - 1) + - h F ( k ) ( r ( k )  - P , ( k ) )  

cy 

4 ( k )  

p(d;J’”lrk) = -N (?(lc); ~ ~ ( k ) ,  a;( lc ) )  

Update Weighting Probabilities 
1 

p(d,k-1,N51rk-1) 

{ J  d:-’ Nb€df N b }  

Update Unconditional Estimates 

Table 2. Simplified Blind Equalization Algorithm 

vectors is invariant with respect to the data subsequences 
for any phase-modulated signal constellation (e.g., BPSK 
and QPSK). Thus, further simplification of the algorithm 
can be achieved by setting a:(k) = a’, Y k ,  V i ,  where o2 is a 
constant. The resulting measurement update is equivalent 
to the LMS algorithm with step size p = &/az. The metric 
probabilities are not sensitive to the actual value chosen for 
a’, provided that a “reasonable” value is c h o ~ e n . ~  Since the 
parameters are fixed for this case, the conditional innova- 
tions variances in Table 2 are no longer computed. Thus, 
the simplified algorithm requires only (i) the conditional 
updates with parameter p ,  (ii) the weighting probability 
updates with parameter u2, and (iii) the unconditional up- 
dates based on the results of (i) and (ii). These uncondi- 
tional updates remove the influence of the “oldest” symbol 
by summing over the M subsequences which differ only in 
the di(k - Nb)th symbol. 

VI. COMPUTATIONAL COMPLEXITY OF THE 
LMS BAYESIAN EQUALIZER 

Unlike the Kalman algorithm in Table 1, the LMS ver- 
sion of the algorithm outlined in Table 2 does not require 
matrix operations, and thus is better suited for implemen- 
tation in parallel DSP devices. To investigate the com- 
putational complexity of the LMS Bayesian equalizer, the 
number of processor instruction cycles required for each in- 
put sample r ( k )  was determined. Table 3 provides the in- 
struction count in terms of N (the number of subsequences 
dFiNb),  M (the size of the symbol alphabet), and Nb (the 
length of the ISI). Recall that N 5 MNb+’, depending 

3The metrics are  primarily influenced by ?,(k), which corresponds t o  
the mean value of the  Gaussian upda te  
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Fig. 2. Bayesian equalizer using parallel LMS adaptive filters. 

Table 3. Instruction Count/Sample for the LMS Bayesian Equalizer 

on the extent to which RSSE is employed? The nietrics 
{~’(CZ;’~~ Irk)} refer to the unnormalzzed MAP probabili- 
ties. The final metrics {p (d f lNb  1.k)) are generated by first 

In order to compute the number of instructions required 
per second, the following assumptions were made, which 
are consistent with most programmable DSP devices. 

e A multiply or add takes one machine instruction cycle. 
e A divide requires 24 instruction cycles. (The number 

of cycles required for a divide operation is processor 
dependent; this figure applies to the Motorola 56000 
DSP 1111.) 

summing the { ~ ‘ ( d f ” ~  Irk)} to  compute the normalization 
constant c, and then dividing each metric by c. It is as- 
sumed that either a fixed step size p or pre-computed gain 
sequence p(k) is used in the LMS update, and that u:(k) 
is approximated by the constant u2. 

4 A  seventh-order series expansion was used for the computation of the 
exponentials in the likelihood update The use of a look-up table with 
Interpolation for this computation would reduce the overall number of 

The symbol rate is 8000 symbols/second (baud), and 
QPSK modulation is employed (hence, the bit rate is 
16 kbps). instructions required per input symbol. 
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e Nb = 2. 
e N = 64 (when RSSE is not employed), or N = 32 

(corresponding to RSSE with M2 = 2,Ml = 4, and 

e The operations are partitioned among Np = 4 parallel 

It should be stressed that the operations in Table 3 are 
of a highly parallel nature. In principle, all steps except 
for normalization of the probabilities ~ ’ ( d , k ’ ~ ~  Irk) could be 
partitioned among Np = N processors. Here, we assume 
that N p  is restricted to be 4. For N = 32 (RSSE with 
M0 = 4, MI = 4, M2 = a ) ,  Table 3 yields 1.38 x lo6 instruc- 
tion cycles per second. This corresponds to an instruction 
cycle duration of approximately 72 nsec. The Motorola 
56000 DSP has a 50 nsec. instruction cycle, and hence 
the implementation for this.example using four processors 
appears to be feasible, if the code can be optimized and 
overhead is kept to a minimum. If RSSE with N = 16 sub- 
sequences is employed, Table 3 yields a required instruction 
cycle duration of 144 nsec., which is well within the capa- 
bilities of the Motorola 56000 DSP, even if considerable 
overhead is required. 

These example calculations indicate that the LMS ver- 
sion of the Bayesian blind equalizer is a good candidate for 
implementation in programmable DSP devices. If special- 
purpose VLSI can be designed, then higher data rates 
and/or longer channels can be accommodated. Finally, it 
should be mentioned that the number of subsequences that 
needs to be considered, and hence the computational com- 
plexity, can be greatly reduced by incorporating a feedback 
channel estimator, as described in [12]. 

Mo = 4). 

Motorola 56000 DSP devices. 

VII. COMPUTER SIMULATIONS 

The new blind equalization algorithm was simulated for 
BPSK and QPSK signals using the Kalman filter (KF) im- 
plementation’ as well as the simpler LMS version. The 
RSSE version of the algorithm was simulated for QPSK 
signalling and LMS adaptation. The following complex 
channel transfer function was used for all versions of the 
Bayesian equalizer: 

H ( z )  (38) 
= 0.444487 + (-.0488658 - j0 .776700)~-~  + 
(-0.440101 3- j.O555976)zM2, 

which has the frequency response shown in Fig. 3. Observe 
that this channel has infinite nulls on the unit circle, which 
is difficult to equalize with an FIR equalizer. The eye pat- 
terns produced by this channel for SNR = 10 dB are shown 
in Fig. 4 for BPSK and QPSK signalling. Observe that for 
both signal formats, the eye is closed prior to equalization. 

During demodulation, BPSK signals can be detected 
from either the in-phase or quadrature channel outputs 
alone. However, since we are also performing channel esti- 
mation, we have used a complex equalizer even for BPSK 
signalling. The SNR was defined in terms of the bit energy 
Eb and the noise power No,  i.e., SNR = 10log(Eb/No) dB. 

Magnitude Response 
O -  I- 

n m a -20 
W 

-60 

-80 
-4 -2 0 2 4 

Radian Frequency 
Fig. 3. Channel frequency response. 

For convenience, E,, = 1 in all simulations, and No was 
varied to evaluate the channel estimator for a variety of 
SNRs. In addition, the bit interval was set equal to one, 
i.e., Tb = 1. 

The results for BPSK signalling are shown in Figs. 5-8, 
while those for QPSK signalling are given in Figs. 9-12. 
The trajectories of the probability metrics are shown for 
one run of the algorithm, while the coefficient error plots 
were obtained by averaging 10 independent runs. Further- 
more, in each of the 10 runs, a random initial coefficient 
estimate b z [ O /  - 1) was chosen for each estimator in order 
to investigate the effects of initialization on the algorithm. 
Each coefficient estimate 1?; ,~(01  - 1) was chosen from a 
uniform distribution in [-0.5,0.5]. 

Since the channel is time-invariant, the algorithms were 
optimized to operate on stationary data, Thus, for the 
Kalman filter version, the state transition matrix was set 
to F = I, and the plant noise covariance Q was set to zero. 
Also, to reduce the misadjustment error of the LMS version 
at steady state, the step size p was allowed to decay at a 
rate o€P = 0.99, i.e., p ( k )  = P k p  with p = 0.5 for BPSK 
and p = 0.25 for QPSK. 

It should be emphasized that both the Kalman and LMS 
adaptive filters are equivalent in steady-state, in the sense 
that their gains both decay to zero. For the Kalman filter, 
this is seen as follows. At high SNR, one of the metrics 
p(dF’Nblrk) is typically close to unity, with the rest near 
zero, and hence the outer product terms v j , i ( k )  in the co- 
variance update in (20) tend to zero. Thus, P z ( k  + l l k )  is 
approximately equal td the ordinary Kalman filter covari- 
ance, which tends to zero for Q = 0. The LMS gains tend 
to zero asymptotically due to the exponential decay factor 

Fig. 5 shows the evolution of the probability metrics of 
the KF version for SNRs of 10 dB and 20 dB. Since the 
channel has three coefficients and M = 2, there are eight 
possible subsequences, and thus eight probability metrics. 
Observe that for the higher SNR, one of the metrics con- 
verges to unity in less than 20 iterations. Although the 

P. 
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Fig. 5. Evolution of the probability metrics (KF, BPSK). 

metric trajectories are noisier for the lower SNR. there is 
still only one metric that dominates after convergence. 

Fig. 6 shows the trajectories for the corresponding en- 
semble averaged coefficient errors, which were obtained 
by averaging the squared errors between the actual chan- 
nel coefficients and the conditional estimates, weighted by 
the prlobability metrics at each iteration. The channel 
coefficient squared-error at iteration k and averaged over 
N,. = 10 runs is thus defined by 

Observe that for SNR = 20 dB, E ( k )  for the Kalman filter 
version is less than -30 dB by about 40 samples, Further- 
more, this level of performance indicates that the algorithm 
is insensitive to a random initialization of the channel co- 
efficient estimates. 

Fig. 7 shows the corresponding metrics for the LMS 
version of the equalizer. Note that the convergence speed 
of these metrics is comparable to that of the KF algori- 
thm. The corresponding channel coefficient squared error 
is shown in Fig. 8. Observe that for SNR = 20 dB, the 
LMS version takes about 300 samples to achieve -30 dB, 
which is about 7 times longer than for the KF algorithm. 
Again, the coefficient squared error was averaged over an 
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Fig. 7. Evolution of the probability metrics (LMS, BPSK). 

ensemble of 10 runs, with the initial coefficient estimates 
randomly chosen from a uniform distribution. 

The slow convergence of the channel estimates for the 
LMS algorithm can be explained as follows. Observe that 
the channel estimates are computed in parallel with the 
actual channel, in a configuration that resembles system 
identification. Since the transmitted data is assumed to be 
white, the eigenvalue spread of the (infinite data) autocor- 
relation matrix is unity. Thus, theoretically, we expect that 
the LMS algorithm would converge as rapidly as the KF al- 
gorithm or a recursive-least-squares (RLS) algorithm [lo]. 
However, for the finite-data case, the autocorrelation m& 
trix is not truly diagonal, and hence the convergence speed 
of the LMS is somewhat slower. Also, for PSK signals, the 

simplified LMS version maintains only one common step 
size parameter p ( k )  for all adaptive filters in the paral- 
lel bank. This may also reduce the convergence speed of 
the LMS algorithm compared to  the KF algorithm, where 
a separate error-covariance matrix is maintained for each 
channel estimate. 

Figs. 9 through 12 show the corresponding results for 
QPSK signalling. In this case since M = 4, there are 
64 possible subsequences, of which we plot only the eight 
largest metrics. Observe again that the metrics for the KF 
and LMS algorithms converge with comparable rates, while 
the coefficient error takes longer to reach steady state. Al- 
so, the channel coefficient estimates for QPSK signalling 
and the KF algorithm take more time to reach steady 
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state, compared to that for BPSK signalling. Slpecifical- 
ly, at SNR = 20 dB, the coefficient error for the IKF algc- 
rithm takes approximately 100 iterations to reach -30 dB, 
whereas for the LMS algorithm, 300 iterations are required. 

The bit-error-rate (BER) performance curves for BPSK 
are presented in Fig 13. Note that AF denotes the Abend 
and Fntchman algorithm [8]. The solid curve, correspond- 
ing to zero ISI, is the performance of binary signalling on 
an addlitive white Gaussian noise (AWGN) channel. To 
obtain an upper bound on the symbol error probability, 
we used the method in [9] and [13] developed for MLSE. 
It should be emphasized that the Bayesian equalizer pre- 
sented here is an approximation to the symbol-by-symbol 
detector of [8]. As discussed in Section 111, the optimum 

symbol-by-symbol detector will perform a t  least as well as 
an optimum sequence estimator, in terms of minimizing the 
symbol error rate. Hence, the bound developed by Forney 
[9] for MLSE performance is a true upper bound on the 
performance of the Abend and Fritchman algorithm. This 
upper limit on the symbol error probability, assuming co- 
herent detection, is given by [13] 

where dLin is the minimum distance for worst-case ISI, and 
ICdmin is the corresponding weighting factor that is inde- 
pendent of N o .  The loss in SNR due to IS1 can be approx- 
imated by 10 log,,(dkin). For the three-coefficient FIR 
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channel, among all error events, an error event of length 2 
gives the lowest value (worst case) for dkin, which is equal 
to 2 - 4. Substituting this into the above expression with 
Kdnan = 2, we obtain the upper BER limit for MLSE in 
the presence of ISI, shown by the dashed line in Fig. 13. 

The BER for the new algorithm was computed using 
coherent detection. The bit errors were counted by re- 
peating the experiment many times, each with a different 
seed for the random number generator, and with a differ- 
ent (random) initial coefficient vector estimate. The BER 
was measured after reaching steady state, Le., we discard- 
ed the initial 1000 samples before counting symbol errors. 
Since both the LMS and KF versions of the algorithm pro- 
vided good-quality channel estimates after 1000 iterations, 

we chose to evaluate the BER only for the LMS version. 
(The KF Bayesian equalizer should typically provide bet- 
ter BER performance only during initial convergence.) The 
standard deviation of the BER estimation error was kept to 
within 5% by repeating the experiment a sufficient number 
of times. 

The performance of the optimum symbol-by-symbol de- 
tector, when the channel is assumed known a przon, pro- 
vides a lower bound on the performance of the Bayesian 
equalizer. However, the error rate of the symbol-by-symbol 
detector of Abend and Fritchman [SI thus far has only been 
evaluated via simulation, and has not yet been bounded or 
derived analytically. We thus employ a simulation of the 
algorithm in [8], with perfect knowledge of the channel as- 
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sumed, as an approximate lower bound on the performance 
of the adaptive Bayesian equalizer. This bound is shown 
for BPSK signalling by the * symbol in Fig. 13. Also 
note froim the figure that the LMS Bayesian equalizer (0 
symbol) has nearly the same performance as that of the 
algorithm in [SI. Thus, as observed in Figs. 6 and 8, the 
channel estimates are extremely good at steady state, en- 
abling tlhe blind algorithm to decode the data as well as 
that in [SI. Fig. 14 shows the BER results of the LMS 
Bayesian algorithm for QPSK signalling. Observe again 
that the blind algorithm has a BER performance compa- 
rable to that of the algorithm in [8]. 

The reduced-state sequence estimator (RSSE) was also 
simulated in order to decrease the complexity of the filter 

L 
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Fig. 14. BER performance curves (QPSK). 

bank for QPSK signalling, and to observe its effect on per- 
formance. The subsets for the three channel coefficients 
were defined with Mo = 4, M I  = 4,  and M2 = 2. Fig. 
15 shows the trajectories of the probability metrics of the 
32 subsets ( M o M I M ~  = 32). Again, the channel in (38) 
was used for both the RSSE and full-state versions of the 
algorithm. The corresponding coefficient error trajectory 
is also shown in Fig. 15. Note that even for this low-order 
channel, the RSSE version converges more slowly than the 
full version of the estimator. We expect that when the 
number of symbols M in the alphabet is large compared to 
the length of the channel, improved results will be achieved 
by choosing subsets with a greater intrasubset distance [6]. 

The bit-error rate of the RSSE version of the algorithm 
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using LMS adaptation is also shown in Fig. 14. For RSSE, 
a divergence test had to be performed by the blind equal- 
izer, because the coefficient estimates diverged more fre- 
quently than for the full-state versions of the algorithm. 
The test statistic computed for LMS adaptation was 

where i,,, represents the index corresponding to the largest 
metric. For small estimation errors, b ( k )  M b and the ex- 
pected value of 2 is unity, When 2 exceeded a threshold 
of 1.3 over the initial N = 1000 samples of a given run, 
the blind equalizcr declared an erasure and the simulation 
was rcstartcd. It should be emphasized that this innova- 
tions test is itself “blind,” in that it can be performed by 
the equalizer without access to either the transmitted data 
or true channel coefficients. Depending on the SNR, 10- 
15% of the runs were found to diverge for RSSE. Note that 
there is a 2 dB loss in performance relative to the full-state 
version of t,he algorithm. 

VIII. DISCUSSION AND CONCLUSION 

A ncw set of blind Bayesian equalization algorithms has 
been presented that are approximations to  the true MAP 
sequence estimator for a przorz unknown channels. It was 
shown that the posterior density of the channel coefficients 
is a Gaussian sum when conditioned on the subsequence 
of data symbols contributing to IS1 on the current sym- 
bol A parallel Kalman filter algorithm for iipdating the 
channel estimates was derived using a unimodal Gaussian 
approximation for this posterior density. The algorithm 
consists of MNbfl conditional Kalman channel estimators 
whose innovations are used to update the MAP sequence 
probabilities. Simpler versions of the algorithm were also 

considered in which the Kalman estimators are replaced 
by LMS adaptive filters, and reduced-state sequence esti- 
mation (RSSE) i s  used to reduce the number of symbol 
subsequences considered. 

The Kalman filter equalizer provides excellent blind start- 
up performance, with the probability metrics and channel 
estimates both converging in about 40 iterations (SNR = 
20 dB). For the LMS algorithm, the simulated bit-error 
rate (BEE) was indistinguishable from that of the opti- 
mum MAP sequcnce estimator, in which exact knowledge 
of the channel is assumed. Thus, for the fixed channel, the 
LMS chane l  estimate corresponding to the largest proba- 
bility metric converged almost exactly to the true channel 
coefficients. However, the LMS channel estimates usually 
converge more slowly than those of the Kalman filter ver- 
sion, which is to be expected since the LMS algorithm is a 
gradient-descent method. 

The performance of the RSSE version of the algorithm 
was found to be inferior to that of the full-state version, 
with a 2 dB loss in RER performance, as well as occasional 
divergence of the channel estimates. While the RSSE al- 
gorithm could compute accurate channel estimates at high 
SNR (> 20 dB), it appears to be best suited for ISI-limited 
channels, as opposed to noise-limited channels. However, 
for high-dimension signal constellations, such as 16 QAM, 
RSSE offers a large computational savings, and it may have 
less performance loss than it does for low-dimension signal 
constellations (e.g., QPSK). 

A computational complexity analysis was performed for 
the LMS Bayesian equalizer. For a 16 kbps application 
using QPSK, and assuming a channel duration of three 
coefficients, it was shown that an implementation using 
a programmable DSP was feasible with four parallel 50 
nsec. devices. Although a detailed comparative discussion 
of implementation issues is beyond the scope of this paper, 
we suggest that the parallel structure of the algorithm, as 

~ 
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shown in Fig. 2, naturally lends itself to a hardware archi- 
tecture employing parallel programmable DSP devices or 

estimators, and hence the amount of hardware required, 

More recent results show that the complexity can be fur- 

so that the prediction update can be rewritten as 

special-purpose VLSI. Furthermore, the number of parallel bi(k Ilk) = (A.4) 

p(dyJb1r’) ’ 
p(djklNb Irk) 

* }  

can be reduced using the RSSE version of the algorithm. 

ther reduced by combining a decision-feedback equalizer 

Fbj(kl4 
f j ,d: SNb E dk+’ ,  Nb  

, I  {m d k N b E d k + ’ r N b  

with the MAP estimator, and retaining only the N largest 
metrics p(df>Nblrk) at each iteration [12]. For example, 
the recent work in [14] indicates that only eight parallel 
LMS estimators are required for a QPSK application with 
a channel duration of Na + 1 = 7. We can thus envision an 
implementation of the algorithm in Fig. 2 with the LMS 
estimators and likelihood computations partitioned among 
a relatively small number of parallel DSP devices. 

To conclude, the Kalman and LMS versions of the algo- 
rithm, while computationally complex, provide extremely 
rapid start-up for blind equalization. Furthermore, since 
the Kalman algorithm assumes a time-varying channel, this 
type of blind equalizer may be better suited for HE’ mod- 
ems, for example, in which large doppler spreads induce 
catastrophic error propagation and deteriorating channel 
estimates. For relatively narrowband applications, such as 
HF communications and voiceband data modems, the al- 
gorithms developed here may prove feasible for implemen- 
tation in programmable DSP devices, and may provide sig- 
nificantly better performance than property-restoral blind 
equalization algorithms. 

which is the result used in Table 1. 

as follows. First, note that 
The covariance of the prediction bi (k  + Ilk) is derived 

E { [b(k  + 1) - ba(k + ilk)] x (A.5) 

E { [b(k + 1) - b i ( k  + Ilk)] x 
{ j ,d:  PNb E dk+’ pNb , I  

[b(k + 1) - b i ( k  + llk)]Hld:9Nb, r’} x 

k,Nb k PCdj Ir 1 
Mp( df+l pNb I r k )  . 

The conditional covariances also depend on the Kalman 
filter measurement updates, e.g., the first term in the j t h  
conditional covariance is equal to  

E [b(k + l )bH(k + l)ld:’Nb,rk] = ( A 4  

A .  DERIVATION OF THE CHANNEL ESTIMATE F P ~ ( I ~ ~ ) F T  + Q + ~ b ~ ( k l k ) b : ( k p ) ~ ~ .  
ONE-STEP PREDICTION 

Since b i ( k  + Ilk) is a constant conditioned on df ’Nb ,  we 
obtain for the cross terms: 

E{b(k + 1)bf(k + lp)ldJINb,rk} = Fbj(k:Ik)bH(k + i lk).  

Combining the above expressions yields the final form of 

In this Appendix, the one-step updates of the channel 
estimate and the associated error covariance matirk are 
derived. Recall that at time k the estimate (A-7) 

ba(’lk - ‘1 = E [b(k)ldf’Nb, “-‘I (A.1) the prediction error covariance matrix: 

is approximated as a Gaussian vector with covariance Pi(k + 118) = 

one-step prediction can then be updated using the follow- 

(-4.8) 

{ (FPj(kIk)FT + Q) x 
Pi(klk - 1). The measurement updates bi(klk)  are giv- 
en by the ordinary Kalman filter equations in (23). The 

ing Bayesian formula: 

{ j : d k  sNb E dk+’ ,Nb  
3 * I  

I 

by Fbj (Llk) ,  which is available from the Kalman filter m e a  
k + l , ~ ~  surement update. The probability of subsequence (ai 

where the vectors v j , i (k )  are given by 

given rk is 
v j , i (k )  = [bi(k + 1Ik) - Fbj(klk)] . (A.9) 

1 
p(df+l*Nblrk) = - P(d;”blrk) ,  (A.3) These last two equations (slightly rewritten) are the final 

3 
results used in Table 1. { j : d k  * N b  E dk++’  I Nb 

M 
, I  
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