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Abstract— A new blind equalization algorithm based on a
suboptimum Bayesian symbol-by-symbol detector is pre-
sented. It is first shown that the maximum « posterwrz (MAP)
sequence probabilities can be approximated using the inno-
vations likelihoods generated by a parallel bank of Kalman
filters. These filters generate a set of chiannel estimates con-
ditioned on the possible symbol subsequences contributing
to the intersymbol interference. The condltlonal estimates
and MAP symbol metrics are then combined using a sub-
optimum Bayesian formiula,. Two methods are considered
to reduce the computatlona} complexity of the algorithm.

First, the technique of reduced-state sequence estimation
is adopted to reduce the number of symbol subsequences
considered in the channel estimation process and hence the
number of parallel filters required. Second, it is shown that
the Kalman filters can be replaced by simpler least-mean-
square (LMS) adaptive filters. A computational complexity
analysis of the LMS Bayesian equalizer demonstrates that
its impleeme’ntation in parallel programmable digital signal
processing devices is feasible at 16 kbps. The performance of
the resulting algonthms is evaluated through bit-error-rate
simulations, which are compared to the performance bounds
of the maximum-likelihood sequence estimator. It is shown
that the Kalman filter and LMS-based algorithms achieve
blind start-up and rapid convergence (typically within 200
iterations) for both BPSK and QPSK modulation formats.

Keywords— Blind equahzatlon, Kalman ﬁltenng, Bayesian
equalization, channel estlmatlon

I. INTRODUCTION

Blind equalization algorithms attempt to determine the
transmitted symbol sequence in the presence of intersymbol
interference (ISI) without prior knowledge of the channel
impulse response. Most efforts in the development of blind
equalizers have focused on “property restoral” algorithms
in which a nonlinear function of the equalizer output is
forced to a constant value [1],(2],[3],[4]. For example, in
the constant modulus algorithm (CMA) (3] the error be-
tween the magnitude (modulus) of the equalizer output
and a constant term is recursively minimized. The result-
ing gradient-descent method has a computational complex-
ity similar to that of the LMS algorithm. The motivation
for these methods is that by ljesltvorin'g"the modulus of the
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received signal, the channel impulse response is implicitly
estimated and the ISI is removed. Since the cost functions
of these algorithms are independent of the transmitted da-
ta sequence, they are capable of blind start-up:

While CMA-type algorithms have the advantage of com-
putational simplicity, their convergence cannot be guaran-
teed. Specifically, it has been shown that CMA may con-
verge to undesired local minima [5), and furthermore, its
convergence rate is extremely slow compared to training-
based equalizer algorithms. For wide bandwidth appli-
cations, such as digital microwave radio or hlgh-speed
switched teléecommunication networks, property-restoral
blind equalization algorithms may be the only alternative,
despite the aforementioned drawbacks. However, with the
advent of programmable digital signal processing (DSP)
devices and special-purpose VLSI, more sophisticated blind
equalization algorithms should be considered, especially for
relatively narrowband systems such as HF digital radio
and voiceband modems. The algorithms presented here,
although seemingly complex, have a parallel structure that
may prove to be well-suited for programmable DSP imple-
mentations and such narrowband communication systems.

In this paper, we present a new set of blind equalization -
algorithms that are approximations to- the optlmum MAP
symbol- by-symbol detector for a prior: unknown channels.
The structure of the optimum MAP sequence estimator is
first discussed, and it is shown that the sequence probabil-
ities can be computed using the innovations derived from a
bank of Kalman filters. The exact MAP sequence estima-
tor requires a separate channel estimate for each possible
symbol sequence and, thus, its computational complexity
grows exponentially with time. To overcome this disad-
vantage, we develop a suboptimum Bayesian recursion for
the MAP subsequence probabilities which mamtams sep-
arate channel estimates for each of MNvt! subsequences
where M is the symbol alphabet size and N, + 1 is the
estimated length of the channel impulse response. The
symbol-by-symbol detector is then obtained by summing
the appropriate MAP subsequence metrics, and the result-
ing algorithm consists of a bank of Kalman filters in which
each filter maintains a channel estimate condmoned on one
of the MNo+l subsequences

‘In order to reduce the complexity of this method, the
technique of reduced-state sequence estimation’ (RSSE) 6]
is employed In RSSE, the MVet! subsequences are grouped
into a coarser partition of N < MMet! subsets, and the
number of Kalman channel estimators is corresponding-
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ly reduced. As a second simplification, the Kalman esti-
mators are replaced by simpler LMS adaptive filters, thus
yielding a set of algorithms which vary in complexity from.a
decision-feedback equalizer to the M™s+1 parallel Kalman
filter structure. A general analysis of the computational
complexity of the LMS Bayesian equalizer is provided to
evaluate its suitability for programmable DSP implemen-
tations. '

The paper is organized as follows. The Bayesian recur-
sion for the symbol probabilities is discussed in Section II
and the suboptimum parallel Kalman estimator is derived
in Section III. The RSSE version of the blind equalization
algorithm is presented in Section IV and the LMS imple-
mentation is developed in Section V. The computational
complexity analysis is presented in Section VI. Computer
simulations and conclusions then follow in Sections VII and

VIIIL

II. DEVELOPMENT OF THE OPTIMUM
BLIND EQUALIZATION ALGORITHM

The following discrete-time channel and signal model is
assumed

Ny
> bm(k)d(k — m) + n(k) (1)

m=0

r(k) =

where r(k) is the output of a matched filter at time £,
d(k) is the current transmitted symbol, and {b,,(k)} rep-
resent the time-varying channel coefficients. For BPSK,
d(k) is real, taking on the values +1, and for QPSK, d(k)
is complex with values {£1,%i}. The channel coefficients
{bm (k)} represent the convolution of the actual ISI channel
impulse response with that of a prewhitening filter, which is
included to ensure that the additive noise samples {n(k)}
are uncorrelated. These noise samples are drawn from a
complex Gaussian distribution with zero mean and vari-
ance o2, Note that perfect synchronization, or eqmvalent—
ly, sampllng of the matched filter output at the optlmum
times is implicitly assumed in (1). In the development of
the Kalman filter channel estimator, it is assumed that the
coefficients {bn, (k) } evolve according to the following com-
plex Gaussian autoregressive (AR) process model:

b(k+ 1) = Fb(k) + w(k) (2)
where b(k) is the coefficient (column) vector defined by
b(k) = [bo(k), b2(k), . .., bNb(k)]T ’ 3

F € WMo D)X (Not1) ig the one-step transition matrix, and
w(k) € CNo*! is a zero-mean circular white Gaussian noise
vector with covariance matrix Q € C(Mr+Dx(No+1),

For convenience in the derivation of the optimum MAP
sequence estimator and blind equalizer, the following cu-
mulative sequences are defined. The cumulative measure-
ment sequence 7* represents the matched filter samples col-
lected up to time &, and is given by

b= {r(k),r(k~1),...,7(0)}. (4)
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A cumulative data sequence is similarly defined as
df = {d;(k),d;(k = 1),...,d;(0)} ()

for the it of M**1 possible sequences. Note that both
of these sequences contain all samples. For the subopti-
mum Bayesian equalizer described in the next section, we
consider only subsets of the full sequence di—“. '

The optimum MAP sequence estimator is now reviewed
for the assumed channel and signal models. The corre-
sponding conditional probablhtles can be written in the
following recursive form:

P& ) = Zp(r(R)lal, (@), (6)
fori=1,2,..., M**! where p(d¥|r*) represents the prob-
ability of the i** possible data sequence given cumulative
measurements r*, and ¢ is a normalization constant.” Fol-
lowing the analysis in [7], it can be shown that the likeli-
hood p(r(k)|d¥, r¥~1) is determmed by the Ka]man filter
estimate as follows

p(r(k)|df, 7"~y = N (r(k); i (klk — 1), 07 (k]k ~ 1)) (7)

where N (z; my, 02) denotes a univariate circular Gaussian
density with mean m, and variance o2. The estimated
signal 7 (k|k— 1) is computed from the conditional channel
estimates according to :

Ny
Pi(klk —1) = Z b m (k|k — 1)d;(k — m) (8)

where Bi,m(k}k—— 1) is exactly equal to the conditional mean
of b,,{k), under the AR process model in (2) when condi-
tioned on data sequence df, i.e.,

[b(k)ldf, =] (9)

This estimate is generated in a straightforward manner by
Kalman filter equations similar to those to be discussed in
Section III.

From (6) and (7), it is seen that the optlmum MAP
sequence estimator requires a bank of M F+1 Kalman fil-
ter channel estimators, each conditioned on a different se-
quence d¥. The MAP probabilities of the sequences are
then obfained as a product of the corresponding likeli-
hoods. Unfortunately, the number of channel estimators
required increases exponentially with time so that the op-
timum sequence estimator is clearly impractical. In [7], a
suboptimal approximation to the MAP estimator was pro-
posed in which conditional channel estimates were propa-
gated only for the survivor sequences in a Viterbi algorithm
(VA). Thus, the number of channel estimators was fixed
at the number of states in the trellis, which in turn was
determined by the length of the channel impulse response.
While the modified VA is computationally feasible for some
low-rate data applications, we seek a further simplifica-
tion to the optimum MAP sequence estimator discussed

bi(klk~1)=E
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here that does not require accumulation of the survivor se-
quences. The resulting blind equalization algorithm, while
approximating the MAP estimator, also resembles a paral-
lel decision-feedback equalizer structure, and hence is more
computationally attractive.

II1. BLIND EQUALIZATION USING PARALLEL
KALMAN CHANNEL ESTIMATORS

The suboptimum Bayesian equalizer and symbol-by-
symbol detector is now derived. Observe that the prob-
ability density function p(b(k)|df, r¥~1) is exactly Gauss-
ian with a mean and covariance determined by a Kalman
channel estimator conditioned on the entire sequence d¥.
Consider conditioning instead on the following subsequen ce:

(10)

which has the same number of terms as the channel
impulse response. The corresponding density function
p(b(k)|dF™, rk=1) is not a Gaussian distribution, but is
instead a weighted sum of Gaussian terms, as follows:

di™ = (di(k), dilk = 1),....,di(k — Ny)},

p(b(R)|d; ™ 1) =

2

{j:deNe=db ey

()
Pl |r*1)

k k-1 —
p(b(k)ld]"r )p(dnyblrk—JS

where the weights are given by the MAP sequence proba-
bilities. In order to simplify the recursion in (6), we will
condition on the subsequence df'N” and approximate the
above density for b{k) with the following unimodal func-
tion:

p(b(B)|dE™, r+=1) ~ N (b(k); bi(k[k — 1), Py(k[k — 1))
(12)
where N'(x;mx, Px) represents a circular multivariate Ga-
ussian density with mean vector mx and covariance matrix
Px. It is next shown that the approximation in (12) yields
a blind equalizer based on a parallel Kalman filter bank;
ie., bi(k|k — 1) and P;(k|k — 1) are updated by a set of
Kalman filter equations.
The MAP estimate of subsequence

by

p(d;™ 1) =
1
=p(r(k)ld] ™, )

d¥™ is determined

(13)

k—1,N -
p(d; k)

2

. k—1,N, _ kN,
{j:d; bed,” b}

where ¢ 1s a normalization constant. In the above sum,
subsequence d;-c-l’N" € df’N" implies that the first Ny sym-
bols in. subsequence d;-“ ~LNo are identical to the last N,
symbols in df’N". For example, with N, = 3 and as-
suming BPSK modulation, if df "> = {—1,1,1,~1} and
df’N" = {1,-1,1,1}, then d;-c"l’N" € df’N". We empha-
size that (13) is exact since it follows directly from Bayes’
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formula. Furthermore, under approximation (12), the like-
lihood p(r(k)|d¥™,7k=1) is Gaussian with a mean given
in terms of b;(kjk — 1), i.e.,

p(r(B)|d} ™, 1) = N (r(k); 7ilkk ~ 1), 07 (klk — 1)).
(14)
The mean #;(k|k — 1) and innovations variance o?(k|k — 1)
are computed as

7i(k|k — 1) = hy(k)b; (k|k — 1), (15)
which is the same as (8), and
of (klk — 1) = hy(k)Pi(klk — )b’ (k) + o7 (16)
where h;(k) is the row vector
ba(k) = [di(k), di(k = 1),. .., di(k = No)].  (17)

The one-step estimate b;(k + 1|k) is defined by the con-
ditional mean
bi(k +11k) = B [b(k + Dld™,r¥], (18)
which follows from (9) such that the subsequence df’N”
is substituted for the full sequence df. Thus, this esti-
mate and the covariance P;(k+1lk) can be computed from
the time updates of the Kalman filter. The derivation
of these quantities is somewhat involved, however, since
p(b(k + l)ldfﬂ’N”,rk) is a Gaussian sum even though
we have approximated p(b(k)[d¥"™ #%-1) as a Gaussian
density in (12). As shown in Appendix A for the AR
process model in (2), the time-updated estimate and co-
variance are determined from the measurement-updated
quantities b;(k|k) and P;(k|k), respectively, that specify
p(b(k)|dE™N #%) | as follows:

bi(k + 1[k) =

> Fb(klk)

. 4k, N k41, Nj
{]:d]. "Gdi+ b}

(19)
p(d; ™ |rk)

> p(di;™ |r*)

{m:di N eattt Ny

and
Pi(k+ 1]k) = (20)
) {(FPj(klk)FT +Q+ v,-,i(k)Vfﬁ(k)) x

(G:aiMoedi My

k,No| k—
p(dj ")

> p(d5 N (k)

ds N e gkt Ney

{m

where

vji(k) = [Bi(k + 1|k) — Fb; (klk)] 21)

determines the outer-product term in (20).
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Finally, the measurement update is defined as

bi(klk) = £ [b(k)]dj ™, r¥] (22)
which is conditioned on the subsequence d;"™** as in (18).
The corresponding measurement updates are determined
from the Kalman filter equations in a straightforward man-
ner; these are given by

bi(k[k) = bi(k|k — 1)+ (23)

1 . A
WP"(W — Dby’ (k) [r(k) — #:(k|k — 1)],
and
I- Eﬁ]'}c_—ﬁpi(klk - 1)h{{(k)hi(k)J P;(klk — 1).

The structure of the blind equalizer is now evident from
(13) and the Kalman measurement updates in (23) and
(24). For each subsequence d}“‘l’N”, the a posteriori proba-
bility p(d}c_l’N"Jrk‘l) is assumed to be available. Likewise,
for each new subsequence df’N”, the conditional channel es-
timate b;(k|k — 1) is also available. A conditional Kalman
filter channel estimate is then computed for each possible
subsequence, and the MAP probability of the subsequence
is updated using the resulting innovations likelihcod. The
overall algorithm is summarized in Table 1. The Bayesian
equalizer structure is thus seen to consist of a bank of
MNe*1 conditional channel estimators. The symbol de-
cisions are made using the MAP probability metrics them-
selves, described below.

The optimum decision* on symbol d(k — Ny) can be per-
formed by computing the following marginal probability
for each possible symbol d(k — Np):

1

d(k — Ny) = arg _max p(dp ™ |rF).
d(k—Ny)
{j:d;j(k—Np)=d(k—Ny)}

(25)
In practice, we have found that only one of the metrics
p(dgc AV ®|rk) converges near unity, so that one term con-
tributes substantially to the summation in (25). The sub-
optimal decision used for the results presented later in this
paper is based on the subsequence with the largest metric,
as follows:

di"™ = arg max p(di""r¥) (26)
aev
d(k — Ny) = di(k — N3). (27)

We emphasize that both the Bayesian equalizer devel-
oped here and the algorithm of Abend and Fritchman [8]
are symbol-by-symbol detectors, and hence minimize the
probability of a symbolerror. In contrast, the better known

11t should be noted that this MAP decision rule, combined with a
Bayesian formula similar to (13), was also used in [8] for the case of @ pri-
ori known channels. However, [8] did not consider the problem of channel
estimation and, thus, their likelihcod computation was much simpler than
in the problem considered here.
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Define Qbservation Vectors
B(k) = [4(k), ... dilk = )]

Compute Conditional Ianovations Covariances
a}(klk = 1) = hi{B)P(klk - Dhf (k) + o2
Compute Signal Estimates

Ny
Filklk = 1) = 3" bialklk = V)di(k = n)

n=0

Update Conditional Measurement Estimates
bi(k|k) = bilkik — 1) + Pi(klk = DR (k) (r(k) — Fi(klk = 1))

1
of(klk - 1)
Update Conditional Error Covariances

1
(klk) = {1 = —ee—cP; - L4 ik (k-
Pi(k|k) {I a}(klk—l)P'(klk Dby (k)hi{ )]P( [k -1)
Update Weighting Probabilities

Ny k s A 2

P Mrt) = <N (r(B) (ke - 1,02k - 1) 2

. k—1.N, &, Ny
{5:d] bed) "t}

p(df—l,lvblrk- 4

Update One-Step Predictions

. d5Ne| ok
bk+1b) = Y )
(™ Mogd 1 My Z pldy ™)
Voed!

e )

Fb;(klk)

Compute Covariance Outer Product Vectors
(k) = [Bilk + 11k) — Fb;(klk)]

Update One-Step Error Covariances

pld; k)
Pik+ k)= 3 (FPGRRIET +Q+ vy stk)fih) e
GidoMoed Ty pldgblr")
s ety
Table 1.  Bayesian Blind Equalization Algorithm

maximum-likelihood sequence estimation (MLSE) algori-
thm of Forney [9] minimizes the probability of a sequence
error. The symbol-by-symbol detector could be obtained
by summing over all relevant sequence probabilities, but
the MLSE algorithm maintains only those probabilities
of the survivor sequences. MLSE is thus not equivalent
to symbol-by-symbol detection. Hence, the optimal MAP
symbol-by-symbol detector theoretically should yield a low-
er bit error rate than the optimum sequence estimator; fur-
thermore, an upper bound on the MLSE symbol error rate
should also serve as an upper bound on the performance of
a symbol-by-symbol detector.

IV. SIMPLIFIED BLIND EQUALIZATION
ALcoriTaM Using RSSE

One possible drawback to the algorithm in Table 1 is
that MM+ Kalman measurement updates must be com-
puted at each iteration, where M is the symbol alphabet
size and Ny + 1 is the length of the channel impulse re-
sponse. To alleviate this problem, we consider a simplified
algorithm using the concept of reduced-state sequence esti-
mation (RSSE), first introduced in [6]. In RSSE, the sym-
bol subsequences {d;**} are grouped into reduced-state
subsequences,? denoted here by {Df’N" = {D;(k), Di(k —
1),...,Di(k— Ny)}}. Each symbol D;(k—m) is actually a

2 Although the {DT’N”} are not, strictly speaking, states in a VA trel-

lis, each D?’Nb carresponds to an individual Kalman channel estimator,
and thus a reduction in the number of symbol subsequences can’ greatly
simplify the algorithm.
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D(k) D(k-1) D(k-2)

e e (-]

1
-] (] -} [
° e | e

2
) © o | o
(-] (] ] (-]

3
® o | o
(-] (-] (] (-]

4
© (-] ®

Fig. 1.

subset of the symbols {d;(k —m)}, and has dimensionality
M,, < M, satisfying My, < Mpn,.1 <... < My <M. For
example, for the case of QPSK signalling with Ny +1 =3,
we could choose My = 4, M; = 2, and My = 1 (denoted
by RSSE(Mq, M1, M3)), which results in a dimensionality
of 8 for the reduced subsequence Df o as opposed to 64
for the original subsequence df’N". The eight subsets are
shown in Fig. 1.

A recursion for the MAP metrics of the reduced-state
subsequences is derived as follows. For the Ungerboeck
partitioning described in [6], the last Nj elements of DZ}-c Ve
are given by a union of the subsequences {D}“'I’N *}. Thus,
we have

p(Df ™|ty = (28)

1 - -
—p(r(R)|[D{N, Yy YD p(Df TR,
{5:p}~Meept N}

which is similar to (13) for the original subsequences. The
likelihood p(r(k)|D¥™*, r¥~1) cannot be computed exactly
from the MAP metric of D*=%™> alone. As a result, we
approximate this likelihood using the metric of the most
likely subsequence df’N” contained in Df M e,

p(r(k)DENe b=ty & p(r(k)|DPN, PE-1) (29)

Ny k-
= arg k,Ngéagk,Nbp(r(k)ldf e (30)

The likelihood above, conditioned on the individual se-
quence clf’N", can be computed using the Kalman filter
one-step predictions according to

p(r(k)|DE™, P4 =1) = N (r(k); #s(klk — 1), 07 (k]k — 1)).
(31)
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D(k) D(k-1) D(k-2)

[ © -] (]

5
(] [ [
(-] o (-] [-]

6
(] [ [
[ -] L]

7
-] -] -] (-]
[} [ -]

8
(-] [ -] -]

Subsets for RSSE(421) (QPSK with Ny +1 = 3).

The estimated signal #;(k|k — 1) and observation vector
h;(k) are similar to those in (15) and (17), respectively, as
follows:

Ny

Fi(klk —1) = > bim(klk — 1)Di(k —m)  (32)
m=0

hi(k) = [Di(k), Di(k = 1),..., Di(k — Ny)]. (33)

Finally, the required modifications to the rest of the al-
gorithm in Table 1 simply involve replacing the original
subsequences df’N * with the reduced-state subsequences
Df Mo For example, the one-step prediction update for
the channel estimate becomes

bi(k + 1|k) =

Z Fb;(klk)

. kN k+41,N;
{.75Dj bED,‘ b}

(34)
p(DF k)

> (D™ 1r%)

. k,N, k+1,N,
{j:D}MeepithNey

Again, it should be emphasized that for a proper parti-
tioning of the symbol subsequences, the last N} elements
of Df 1N are expressed as a union of the first Ny elements

of D;?’N". ’

V. BLIND EQUALIZATION USING PARALLEL
LMS ApaAPTIVE FILTERS

In order to reduce the complexity even further, we pro-
pose using scalar gradient algorithms for the Kalman fil-
ter measurement updates. These algorithms are simi-
lar to the LMS algorithm and its normalized forms [10},
and they do not require an underlying state-space mod-
el or any covariance matrix updates. Thus, the algori-
thm in Table 1 is simplified by approximating all covari-
ance matrices with a scaled version of the identity matrix:
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P;(k|k) ~ P;(klk — 1) =~ 71 (where v > 0). Furthermore,
the underlying state-space model is “ignored,” which is eq-
uivalent to setting the system matrix F equal to the ide-
ntity matrix, and the process noise covariance Q equal to
zero.

We will adopt a slightly different notation for clarity.
The predicted estimates {b;(k+1|k)} are replaced by {b;(k)}
and the filtered estimates {b;(k|k)} become {b;(k)}. We
will refer to {b;(k)} and {b;(k)}, respectively, as the un-
conditional and conditional channel estimates. Fig. 2
shows the resulting efficient implementation of the LMS
filter bank. Observe that there are N = MM+l single-
input, single-output adaptive finite impulse response (FIR)
filters comprised of the unconditional estimates B%(k -1,
i=1,..., MM+l The filter inputs are determined by all
possible subsequences {h;(k)}, and each filter output #;(k)
is generated according to the inner product

7 (k) = hy(k)b;(k —1). (35)

Thus, the output of the :** FIR filter corresponds to an
estimate of the current received symbol 7(k), assuming that
the #** subsequence was transmitted (i.e., conditioned on
the i** subsequence). The filter outputs are then compared
to the received sample (k) to generate a set of innovations
or error signals, e;(k) = r(k) — #i(k), i = 1,..., MNo+L,

The conditional innovations variance update in (16) be-
comes

o} (k) = vhi(W)hf' (k) + o7, (36)
and the conditional measurement update in (23) reduces
to
=z

i (k)

where « i1s a constant usually chosen to be 0 < a < 2
[10]. Table 2 outlines the simplified algorithm, which now
requires only three parameters: (i) the step size o, (ii) an
estimate of the noise variance ¢Z2, and (iii) the variance
factor v. ;

The measurement updates have the same form as a nor-
malized version of the LMS algorithm [10]. It is well known
that the convergence properties of gradient algorithms are
sensitive to changes in the power of the input signal. The
conditional innovations variances {cZ(k)} are estimates of
this power for each of the possible subsequences, and they
are used in the measurement update to compensate for
any power variations. Thus,; it is possible to have a more
uniform convergence rate over a wide variation of the in-
put signal power. In this context, the measurement noise
variance o2 can be viewed as a constant that is included
primarily to ensure that the measurement update term is
not exceedingly large when the inner product yh;(k)hf (k)
is small.

From Table 2, we see that the approximate innovations
variance o?(k) affects not only the measurement updates,
but also the probability metric updates. However, our
simulations demonstrate that the overall algorithm per-
formance is fairly insensitive to variations in ¢?(k). Fur-
thermore, the inner product h;(k)hy (k) of the observation

b; (k) = bi(k — 1) + hH (k) [r(k) — 7:(k)]  (37)

Define Observation Vectors

hi(k) = [di(k), ..., di(k — Ne)]

Compute Conditional Innovations Variances

of(k) = yhi(k)hf (k) + o}
Compute Signal Estimates

Ny
fi(k) =Y bin(k — 1)di(k —n)

n=0

Update Conditional Estimates
he(k) = bi(k — 1)+ ——hH —#
b;(k) =bi(k— 1)+ a,?(k)hl (k) (r(k) — 7:(k))

Update Weighting Probabilities
L . - -
G R COTIORAO) D DI (il

. k~1,N, kN,
(]:d] bedl» b}

Update Unconditional Estimates

kNyi k
~ ~C p(d IT )
b‘l(k) = 2 ; b](k) . - kNl &k
E Ve
{]':d:'NbGdf*—LNb} ( L Nb}p(dm ‘T )
madiyMoed!

Table 2. Simplified Blind Equalization Algorithm

vectors is invariant with respect to the data subsequences
for any phase-modulated signal constellation (e.g., BPSK
and QPSK). Thus, further simplification of the algorithm
can be achieved by setting o2(k) = 02, Vk, Vi, where 0% isa
constant. The resulting measurement update is equivalent
to the LMS algorithm with step size 4 = a/0?. The metric
probabilities are not sensitive to the actual value chosen for
o?, provided that a “reasonable” valueis chosen.® Since the
parameters are fixed for this case, the conditional innova- ;
tions variances in Table 2 are no longer computed. Thus,
the simplified algorithm requires only (i) the conditional
updates with parameter g, (ii) the weighting probability

updates with parameter o2, and (iii) the unconditional up-
dates based on the results of (i) and (ii). These uncondi-
tional updates remove the influence of the “oldest” symbol

by summing over the M subsequences which differ only in
the d;(k — Ny)** symbol.

VI. CoMPUTATIONAL COMPLEXITY OF THE
LMS BAYESIAN EQUALIZER

Unlike the Kalman algorithm in Table 1, the LMS ver-
sion of the algorithm outlined in Table 2 does not require
matrix operations, and thus is better suited for implemen-
tation in parallel DSP devices. To investigate the com-
putational complexity of the LMS Bayesian equalizer, the
number of processor instruction cycles required for each in-
put sample r(k) was determined. Table 3 provides the in-
struction count in terms of N (the number of subsequences
dFN*) M (the size of the symbol alphabet), and N; (the
length of the ISI). Recall that N < MM+l depending

3The metrics are primarily influenced by #;(k), which corresponds to
the mean value of the Gaussian update.
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Fig. 2. Bayesian equalizer using parallel LMS adaptive filters.
Variable Complex Complex Real Real Real
Adds Multiplies Adds Multiplies Divides
f’z(k') N'x N, N(Nb+1) 0 0 0
b, (k) N(Ny+2) | N(NV; +2) 0 0 0
(&5 |rk) 0 0 N(11+ (M - 1)) 33N 0
p(d5 N [rk) 0 0 N-1 0 N
b;(k) 0 0 (N/M)(M ~1)(Ny +2) | (N/M2M(N,+1) | N/M
Table 3.  Instruction Count/Sample for the LMS Bayesian Equalizer

on the extent to which RSSE is employed.* The metrics
{p’(df’N"lrk)} refer to the unnormalized MAP probabili-
ties. The final metrics {p(df’N" [r%)} are generated by first
summing the {p’(d""**|r*)} to compute the normalization
constant ¢, and then dividing each metric by ¢. It is as-
sumed that either a fixed step size p or pre-computed gain
sequence u(k) is used in the LMS update, and that o?(k)
is approximated by the constant o2,

4 A seventh-order series expansion was used for the computation of the
exponentials in the likelihood update. The use of a look-up table with

interpolation for this computation would reduce the overall number of
instructions required per input symbol.

In order to compute the number of instructions required
per second, the following assumptions were made, which
are consistent with most programmable DSP devices.

o A multiply or add takes one machine instruction cycle.

e A divide requires 24 instruction cycles. (The number
of cycles required for a divide operation is processor
dependent; this figure applies to the Motorola 56000
DSP [11].)

e The symbol rate is 8000 symbols/second (baud), and
QPSK modulation is employed (hence, the bit rate is
16 kbps). ‘
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o Ny =2.

e N = 64 (when RSSE is not employed), or N = 32
(corresponding to RSSE w1th My = 2, My = 4, and
My =4).

¢ The operations are partitioned among N, = 4 parallel
Motorola 56000 DSP devices.

It should be stressed that the operations in Table 3 are
of a hlghly parallel nature. In principle, all steps except
for normalization of the probabilities p (d”c N”[r ) could be
partltloned among N, = N processors. Here, we assume
that N, is restricted to be 4. For N = 32 (RSSE with
My =4, My =4, My = 2), Table 3 yields 1.38 x 106 instruc-
tion cycles per second Thls ¢orresponds to an instruction
cycle duration of approx1mately 72 nsec.. The Motorola
56000 DSP has a 50 nsec.. instruction cycle and hence
the implementation for this example using four processors
appears to be feasible, if ‘the code can be optimized and
overhead is kept to a minimum. If RSSE with N = 16 sub-
sequences is employed, Table 3 yields a required instruction
cycle duration of 144 nsec., which is well Wlthm the capa-
bilities of the Motorola 56000 DSP, even if considerable
overhead is required.

These example calculations indicate that the LMS ver-
sion of the Bayesian blind equalizer i is a good candidate for
implementation in programmable DSP devices. If special-
purpose VLSI can be designed, then higher data rates
and/or longer channels can be accommodated. Finally, it
should be mentioned that the number of subsequences that
needs to be considered, and hence the computatlonal com-
plexity, can be greatly reduced by incorporating & feedback
channel estimator, as described in [12].

VII. COMPUTER SIMULATIONS

The new blind equalization algorithm was simulated for
BPSK and QPSK signals using the Kalman filter (KF) im-
plementatlon as well as the simpler LMS version. The
RSSE version of the algorlthm was simulated for QPSK
signalling and LMS adaptation. The followmg complex
channel transfer function was used for all versions of the
Bayesian equalizer:

H(z)
= 0.444487 + (—.0488658 — jO 776700)z'1 +
(~0.440101 + j.0555076) 2~

(38)

which has the frequency response shown in Fig. 3. Observe
that this channel has infinite nulls on the unit circle, which
is difficult to equalize with an FIR equahzer The eye pat-
terns produced by this channel for SNR. = 10 dB.are shown
in Fig. 4 for BPSK and QPSK signalling. Observe that for
both signal formats, the eye is closed prior to equalization.

During demodulation, BPSK signals can be detected
from either the 1n-phase or quadrature channel outputs
alone. However, since we are also perforrmng channel esti-
mation, we have used a complex equalizer even for BPSK
signalling. The SNR was defined in terms of the bit energy
E}y and the noise power N,, i.e., SNR = 1010g(Eb/N ) dB
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Channel frequency response.

For convenience, By = 1 in all simulations, and N, was
varied to evaluate the channel estimator for a variety of
SNRs. In addition, the bit interval was set equal to one,
ie., Tp = 1.

The results for BPSK s1gna]11ng are shown in Figs. 5-8,
while those for QPSK signalling are given in Figs. 9-12.
The trajectories of the probability métrics are shown for
one run -of the algorithm, while the coefficient error plots
were obtained by averaging 10 independent runs. Further-
more, in each of the 10 runs, a random initial coefficient
estimate b;(0] — 1) was chosen for each estimator in order
to investigate the effects of initialization on the algorithm.
Each coefficient estimate b; (0] — 1) was chosen from a |
uniform distribution in {—0.5,0.5}.

Since the channel is time-invariant, the algorithms were
optimized to operate on statlonary data Thus, for the
Kalman filter version, the state transition matrix was set
to'F = I, and the plant noige covariance Q was set to zero.
Also, to reduce the Imsadjustment error of the LMS version
at steady state, the step size u was allowed to decay at a
rate of § =0.99,ie., u(k) = FFu with = 0. 5 for BPSK
and g = 0.25 for QPSK
. Tt should be emphasized that both the Kalman and LMS
adaptlve filters are equivalent in steady-state in the sense
that their gains both decay to zero. For the Kalman filter,
this is seen as follows. At high SNR, one of the metrics

(a’k ”]r’“) is typically close to unity, with the rest near
zero, and hence the outer product terms v;;(k) in the co-
variance update in (20) tend to zero. Thus, P;(k + 1[k) is
approximately equal td the ordinary Kalman filter covari-
ance, which tends to zero for Q = 0. The LMS gains tend
to zero asymptotically due to the exponentlal decay factor

B. :

Fig. 5 shows the evolution of the probability metrics of
the KF version for SNRs of 10 dB and 20 dB. Since the
channel has three coefficients and M = 2, there are eight
possible subsequences, and thus eight pIObabiIity metrics.
Observe that for the higher SNR, one of the metrics con-
verges to unity in less than 20 iterations. Although the
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metric trajectories are noisier for the lower SNR, there is
still only one metric that dominates after convergence.

Fig. 6 shows the trajectories for the corresponding en-
semble averaged coefficient errors, which were obtained
by averaging the squared errors between the actual chan-
nel coefficients and the conditional estimates, weighted by
the probability metrics at each iteration. The channel
coefficient squared-error at iteration k and averaged over
N, = 10 runs is thus defined by

E(k) = (39)
N, 2o+l

1Y
—N:;Nb-i—lz Z{

m=0 i=1

o 2
Wm@M—U—MJ

x p(df’N"irk“l)} ‘

Observe that for SNR = 20 dB, E(k) for the Kalman filter
version 1s less than —30 dB by about 40 samples. Further-
more, this level of performance indicates that the algorithm
is insensitive to a random initialization of the channel co-
efficient estimates.

Fig. 7 shows the corresponding metrics for the LMS
version of the equalizer. Note that the convergence speed
of these metrics is comparable to that of the KF algori-
thm. The corresponding channel coefficient squared error
is shown in Fig. 8. Observe that for SNR = 20 dB, the
LMS version takes about 300 samples to achieve —30 dB,
which is about 7 times longer than for the KF algorithm.
Again, the coefficient squared error was averaged over an
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ensemble of 10 runs, with the initial coefficient estimates
randomly chosen from a uniform distribution.

The slow convergence of the channel estimates for the
LMS algorithm can be explained as follows. Observe that
the channel estimates are computed in parallel with the
actual channel, in a configuration that resembles system
identification. Since the transmitted data is assumed to be
white, the eigenvalue spread of the (infinite data) autocor-
relation matrix is unity. Thus, theoretically, we expect that
the LMS algorithm would converge as rapidly as the KF al-
gorithm or a recursive-least-squares (RLS) algorithm [10].
However, for the finite-data case, the autocorrelation ma-
trix is not truly diagonal, and hence the convergence speed
of the LMS is somewhat slower. Also, for PSK signals, the

20 40 60 80
Number of Samples

100

Evolution of the probability metrics (LMS, BPSK).

simplified LMS version maintains only one common step
size parameter y(k) for all adaptive filters in the paral-
lel bank. This may also reduce the convergence speed of
the LMS algorithm compared to the KF algorithm, where
a separate error-covariance matrix is maintained for each
channel estimate.

Figs. 9 through 12 show the corresponding results for
QPSK signalling. In this case since M = 4, there are
64 possible subsequences, of which we plot only the eight
largest metrics. Observe again that the metrics for the KF
and LMS algorithms converge with comparable rates, while
the coefficient error takes longer to reach steady state. Al-
so, the channel coefficient estimates for QPSK signalling
and the KF algorithm take more time to reach steady
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state, compared to that for BPSK signalling. Specifical-
ly, at SNR = 20 dB, the coefficient error for the KF algo-
rithm takes approximately 100 iterations to reach —30 dB,
whereas for the LMS algorithm, 300 iterations are required.

The bit-error-rate (BER) performance curves for BPSK
are presented in Fig 13. Note that AF denotes the Abend
and Fritchman algorithm [8]. The solid curve, correspond-
ing to zero ISI, is the performance of binary signalling on
an additive white Gaussian noise (AWGN) channel. To
obtain an upper bound on the symbol error probability,
we used the method in [9] and [13] developed for MLSE.
It should be emphasized that the Bayesian equalizer pre-
sented here is an approximation to the symbol-by-symbol
detector of [8]. As discussed in Section III, the optimum

symbol-by-symbol detector will perform at least as well as
an optimum sequence estimator, in terms of minimizing the
symbol error rate. Hence, the bound developed by Forney
[9] for MLSE performance is a true upper bound on the
performance of the Abend and Fritchman algorithm. This
upper limit on the symbol error probability, assuming co-
herent detection, is given by [13]

1 | E,
_Pe ~~ EI{dminerfc < _]\_fb;drznin)
2

where dZ,; . is the minimum distance for worst-case ISI, and
Kimin is the corresponding weighting factor that is inde-
pendent of N,. The loss in SNR due to ISI can be approx-
imated by 10log;o(d?,;,). For the three-coefficient FIR

(40)
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channel, among all error events, an error event of length 2
gives the lowest value (worst case) for d2 ;,, which is equal
to 2—+/2. Substituting this into the above expression with
Kigmin = 2, we obtain the upper BER limit for MLSE in
the presence of ISI, shown by the dashed line in Fig. 13.
The BER for the new algorithm was computed using
coherent detection. The bit errors were counted by re-
peating the experiment many times, each with a different
seed for the random number generator, and with a differ-
ent (random) initial coefficient vector estimate. The BER
was measured after reaching steady state, i.e., we discard-
ed the initial 1000 samples before counting symbol errors.
Since both the LMS and KF versions of the algorithm pro-
vided good-quality channel estimates after 1000 iterations,
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we chose to evaluate the BER only for the LMS version.
(The KF Bayesian equalizer should typically provide bet-
ter BER performance only during initial convergence.) The
standard deviation of the BER estimation error was kept to
within 5% by repeating the experiment a sufficient number
of times.

The performance of the optimum symbol-by-symbol de-
tector, when the channel is assumed known a priori, pro-
vides a lower bound on the performance of the Bayesian
equalizer. However, the error rate of the symbol-by-symbol
detector of Abend and Fritchman (8] thus far has only been
evaluated via simulation, and has not yet been bounded or
derived analytically. We thus employ a simulation of the
algorithm in [8], with perfect knowledge of the channel as-
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sumed, as an approximate lower bound on the performance
of the adaptive Bayesian equalizer. This bound is shown
for BPSK signalling by the * symbol in Fig. 13. Also
note from the figure that the LMS Bayesian equalizer (O
symbol) has nearly the same performance as that of the
algorithm in [8]. Thus, as observed in Figs. 6 and 8, the
channel estimates are extremely good at steady state, en-
abling the blind algorithm to decode the data as well as
that in [8]. Fig. 14 shows the BER results of the LMS
Bayesian algorithm for QPSK signalling. Observe again
that the blind algorithm has a BER performance compa-
rable to that of the algorithm in [g].

The reduced-state sequence estimator (RSSE) was also
simulated in order to decrease the complexity of the filter

bank for QPSK signalling, and to observe its effect on per-
formance. The subsets for the three channel coeflicients
were defined with My = 4, M; = 4, and M; = 2. Fig.
15 shows the trajectories of the probability metrics of the
32 subsets (MoM1 M, = 32). Again, the channel in (38)
was used for both the RSSE and full-state versions of the
algorithm. The corresponding coeflicient error trajectory
is also shown in Fig. 15. Note that even for this low-order
channel, the RSSE version converges more slowly than the
full version of the estimator. We expect that when the
number of symbols M in the alphabet is large compared to
the length of the channel, improved results will be achieved
by choosing subsets with a greater intra-subset distance [6].

The bit-error rate of the RSSE version of the algorithm
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using LMS adaptation is also shown in Fig. 14. For RSSE,
a divergence test had to be performed by the blind equal-
izer, because the coefficient estimates diverged more fre-
quently than for the full-state versions of the algorithm.
The test statistic computed for LMS adaptation was

(41)

where 4,4, represents the index corresponding to the largest
metric. For small estimation errors, b(k) & b and the ex-
pected value of Z is unity. When Z exceeded a threshold
of 1.3 over the initial N = 1000 samples of a given run,
the blind equalizer declared an erasure and the simulation
was restarted, It should be emphasized that this innova-
tions test is itself “blind,” in that it can be performed by
the equalizer without access to either the transmitted data
or true channel coefficients. Depending on the SNR, 10-
15% of the runs were found to diverge for RSSE. Note that
there is a 2 dB loss in performance relative to the full-state
version of the algorithm.

VIII. DiscussioN AND CONGLUSION

A new set of blind Bayesian equalization algorithms has
been presented that are approximations to the true MAP
sequence estimator for « priori unknown channels. It was
shown that the posterior density of the channel coefficients
is a Gaussian sum when conditioned on the subsequence
of data symbols contributing to IST on the current sym-
bol. A parallel Kalman filter algorithm for updating the
channel estimates was derived using a unimodal Gaussian
approximation for this posterior density. The algorithm
consists of M1 conditional Kalman channel estimators
whose innovations are used to update the MAP sequence
probabilities. Simpler versions of the algorithm were also
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considered in which the Kalman estimators are replaced
by LMS adaptive filters, and reduced-state sequence esti-
mation (RSSE) is used to reduce the number of symbol
subsequences considered.

The Kalman filter equalizer provides excellent blind start-
up performance, with the probability metrics and channel
estimates both converging in about 40 iterations (SNR =
20 dB). For the LMS algorithm, the simulated bit-error
rate (BER) was indistinguishable from that of the opti-
mum MAP sequcnce estimator, in which exact knowledge
of the channel is assumed. Thus, for the fixed channel, the
LMS channel estimate corresponding to the largest proba-
bility metric converged almost exactly to the true channel
coefficients. However, the LMS channel estimates usually
converge more slowly than those of the Kalman filter ver-
sion, which is to be expected since the LMS algorithm is a
gradient-descent method. '

The performance of the RSSE version of the algorithm
was found to be inferior to that of the full-state version,
with a 2 dB loss in BER performance, as well as occasional
divergence of the channel estimates. While the RSSE al-
gorithm could compute accurate channel estimates at high
SNR (> 20 dB), it appears to be best suited for ISI-limited
channels, as opposed to noise-limited channels. However,
for high-dimension signal constellations, such as 16 QAM,
RSSE offers a large computational savings, and it may have
less performance loss than it does for low-dimension signal
constellations (e.g., QPSK).

A computational complexity analysis was performed for
the LMS Bayesian equalizer. For a 16 kbps application
using QPSK, and assuming a channel duration of three
coefficients, it was shown that an implementation using
a programmable DSP was feasible with four parallel 50
nsec. devices. Although a detailed comparative discussion
of implementation issues is beyond the scope of this paper,
we suggest that the parallel structure of the algorithm, as
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shown in Fig. 2, naturally lends itself to a hardware archi-
tecture employing parallel programmable DSP devices or
special-purpose VLSI. Furthermore, the number of parallel
estimators, and hence the amount of hardware required,
can be reduced using the RSSE version of the algorithm.
More recent results show that the complexity can be fur-
ther reduced by combining a decision-feedback equalizer
with the MAP estimator, and retaining only the N largest
metrics p(d’c N "lr" ) at each iteration [12]. For example,
the recent work in [14] indicates that only eight parallel
LMS estimators are required for a QPSK application with
a channel duration of Ny +1 = 7. We can thus envision an
implementation of the algorithm in Fig. 2 with the LMS
estimators and likelihood computations partitioned among
a relatively small number of parallel DSP devices.

To conclude, the Kalman and LMS versions of the algo-
rithm, while computationally complex, provide extremely
rapid start~up for blind equalization. Furthermore, since
the Kalman algorithm assumes a time-varying channel, this
type of blind equalizer may be better suited for HF mod-
ems, for example, in which large doppler spreads induce
catastrophic error propagation and deteriorating channel
estimates. For relatively narrowband applications, such as
HF communications and voiceband data modems, the al-
gorithms developed here may prove feasible for implemen-
tation in programmable DSP devices, and may provide sig-
nificantly better performance than property-restoral blind
equalization algorithms.

A. DERIVATION OF THE CHANNEL ESTIMATE
ONE-STEP PREDICTION

In this Appendix, the one-step updates of the channel
estimate and the associated error covariance matrix are
derived. Recall that at time k the estimate

bi(klk—1)= E [b(k)]df’N”, rk“l] (A.1)
is approximated as a Gaussian vector with covariance
P;(klk — 1). The measurement updates ,(k|k’) are giv-
en by the ordinary Kalman filter equations in (23). The
one-step prediction can then be updated using the follow-
ing Bayesian formula:

bi(k+1jk) = E

S E[b(k+1)|d;~°’N”,r’°]

. k,Ny ,gk41,N
{]:d‘j bed,‘+ b}

[b(k + 1yldb+2m r¥]

p(d; ™ |r*)

The conditional expectation £ [b(k + l)ld;-“’N", rk ] is given

by Fb;(k|k), which is available from the Kalman filter mea-
surement update. The probability of subsequence df +1L.N
given rf is

1
E+1,N,
Pty = >
{j:d5Noeds TNy
7 1

p(d;-c’N" ), (A.3)

(A.2)

Mp(di "™ )rk)
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so that the prediction update can be rewritten as

f)i(k +1lk) =

D

ok Ny k4L, N,
{]:dj bed.' ; *}

(AA4)
p(dy ™)

2 ety

{m:d,:n’Nb Ed?+1’N',’}

Fb; (k|k)

which is the result used in Table 1.
The covariance of the prediction b;(k + 1]k) is derived
as follows. First, note that

E{[b(k+ 1) = by(k + 1[k)] x (A.5)

. H
[b(k +1)—bi(k+ 1|Ic)] ldf“’N",r’“} =

>

. kN Ny
{5:d; Moed v ey

E{[b(lc +1) — Bi(k + 1k)] x
[b(k + 1) — bi(k + L)} a5, r’“} x
p(di ™ |rk)

Mp(d; T |rk)

The conditional covariances also depend on the Kalman
filter measurement updates, e.g., the first term in the ji*
conditional covariance is equal to

E [b(k+ )b (k + D}, 1] = (A6)
FP; (k[k)ET + Q + Fb; (k[k)b; (|k)ET.
Since b;(k + 1]k) is a constant conditioned on df’N", we

obtain for the cross terms:

E{b(k +1)b; (k+ Lk)|d5™, r¥} = FB; (klk)B; (k + 1[k).

(A7)
Combining the above expressions yields the final form of
the prediction error covariance matrix:

Pi(k+ 1]k) =

2

() oeal )

(A.8)
{(FP;(k11)F” + Q) x

k,No | k-
P(dj *|r¥-1)

> ™

{mdi N Ed?“’”" }

+ > vk

(N ed; TNy

p(dj ™)

k
S S

{m:d’:,;N" Ed’:+l’Nb}

where the vectors v; ;(k) are given by

v (k) = [B,;(k +1k) — FB,-(k[k)] . (A9)

These last two equations (slightly rewritten) are the final
results used in Table 1.
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