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Abstract 

Nonlinear algorithms for the joint recovery of cochannel 
narrowband signals are proposed. For finite impulse re- 
sponse channel characteristics, maximum likelihood and 
maximum a posteriori criteria are employed to derive 
cochannel demodulators of varying complexities and de- 
grees of performance. The error rate performance of these 
joint estimation algorithms is examined through computer 
simulations. 

1 Introduction 

Cochannel interference is a major impairment to re- 
liable transmission in many narrowband communication 
systems. For example, in cellular radio systems employ- 
ing frequency-reuse, one or more secondary signals from 
nearby cells can interfere with the desired (primary) sig- 
nal. In addition to cochannel interference, the primary 
and secondary signals may be corrupted by intersymbol 
interference (13)  from multipath delays and by additive 
noise. Among these factors, cochannel interference often 
causes the most severe degradation in performance due 
to spectral overlap. Instead of using interference suppres- 
sion techniques, in certain applications like dual-polarized 
microwave radio, we are interested in jotnt ly  estimating 
both c-ochannel signals. Spatial diversity techniques for 
estimating narrowband cochannel signals have been pro- 
posed in the array processing literature (e.g., see [l]). In 
this paper, we are interested in cochannel demodulation 
using a single receiver, and hence nonlinear processing 
techniques are needed to achieve an acceptable bit error 
rate (BER) performance. 

We consider a communication system model with one 
secondary data stream to be jointly recovered along with 
the primary data stream. The techniques are based on 
maximum likelihood sequence estimation (MLSE) [2] and 
maximum a posteriori symbol detection (MAPSD) [3]. 
Since the cochannel data sequences are jointly recovered, 
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Figure 1: Cochannel system model. 

we refer to the corresponding algorithms as joint MLSE 
(JMLSE) and joint MAPSD (JMAPSD). These optimal 
techniques can be expected to yield the best possible 
BER performance under a wide range of signal and chan- 
nel conditions, but they are computationally expensive. 
However, it is possible to implement the JMAPSD algo- 
rithm ueing a suboptimal two-stage configuration (which 
has some similarity to a quasi-linear "demod-remod" ap- 
proach proposed in [4]), thereby reducing the computa- 
tional complexity. Also, a novel secondary feedback mech- 
anism can be incorporated into the two-stage JMAPSD 
algorithm, which greatly enhances its BER performance 
for low signal-to-interference ratios (SIRS). 

2 Cochannel Signal Model 

The assumed cochannel system model is shown in Fig- 
ure 1. The transmitted low-pass equivalent waveforms can 
be represented by 

00 

sm(t) = d,,,(/c)g(t - KT), m = I ,  2 (1) 

where T is the symbol duration, and {dl(k)} and {da(k)} 
are the primary and secondary source symbols, respec- 
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tively. The pulse function g(t) has a raised-cosine re- 
sponse with a finite duration of 2T seconds. We pro- 
pose a T/2-spaced sampler implementation (although it 
has about twice the complexity of a T-spaced implemen- 
tation) for the following reasons: (a) eliminates the need 
for R whitening matched filter (which cannot be ideally 
defined for this cochannel problem); (b) takes advantage 
of the excess bandwidth in g ( t ) ;  and (c) reduces sensitiv- 
ity to sampling time offsets, and thus recovers nonsyn- 
chroniaed cochannel signals more easily than a T-spaced 
implementation. 

Hence, the discrete measurement samples of the re- 
ceived signal r(t) at the output of the T/2-spaced sampler 
in Figure 1 are given by 

2 Lm 
r(kT + jT /2 )  = + jT/2)dm(k - n) 

m = l  n=O 
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Figure 2: Joint ML sequence estimation. 

+ w(kT + jT /2) ,  j = 0 , l  (2) 
where the noise sequences {w(kT + jT /2) }  are assumed 
to bt, mutually uncorrelated, white, and Gaussian with 
zero mean and equal variance g:,. The delay spreads 

cochannel signals, the objective of JMLSE (illustrated in 
Figure 2) is to determine the pair of sequences d!,2} 
that minimize the sum of squared errors defined by the 
error (likelihood) sequence ' ! J *  

of the primary and secondary channels are LIT and 
L2T, respectively. The 2(L ,  + 1) channel coefficients 
{f,,,,(kT + jT/2)) represent the convolution of the IS1 
channels {h,( t )}  with the transmit filter g ( t ) ,  sampled at 
T/2 seconds (assuming perfect timing synchronization). 
For convenience, we will henceforth use a T-spaced rep- 
resentation for all variables; for example, we will use r(k) 
instead of r(kT + jT /2) .  The goal of the receiver is to 
accurately recover the primary and secondary sequences 
{dl(k)} and { & ( E ) } ,  given reliable estimates of the chan- 
nel coefficients {fi,,,(k)} and {#2, , , (k)} .  

3 Joint ML Sequence Estimation 

In the single-channel scenario, the objective of MLSE 
it  to determine the one sequence 4 = { d ; ( k ) ,  . . . , d i ( 0 ) )  
out of all possible transmitted symbol sequences such that 

P(rkld:) 2 P(rkld;),Vq f i (3) 

where rL = { r ( k ) , .  . . , r (O) }  is the actual received se- 
quence. When the additive noise components in (2) are 
independent and Gaussian, the above can be replaced by 
a Euclidean distance criterion, which for T-spaced MLSE 
is given by 

k t 

df : 2 Ir(l) - ii(l)12 2 I.(/) - i , ( l )12,Vq # i (4) 
k 0  l = O  

where i i ( k )  are the signal estimates generated from df us- 
ing the known channel coefficients. (In Tl2-spaced MLSE, 
the single summations become double summations, anal- 
ogous to that in (2).) For the joint demodulation of two 

When the channel has a finite impulse response (FIR), 
the Viterbi algorithm (VA) is a practical way of imple- 
menting optimal (single-channel) MLSE [2]. Assuming a 
channel memory of L symbol lengths, the VA maintains 
a decoding trellis with M L  nodes or states (where M is 
the number of source symbols) and an equal number of 
survivor sequences. Each state is a particular sequence of 
L previously transmitted symbols { d( IC - 1) , . . . , d( le - L ) }  
from which the present symbol d(k) could be obtained. 
For example, the it" state is defined by s;-ltL = {dj(k - 
l ) ,  . . . , di(k - L ) } ;  it is evident that s:-ljL can transition 
to M possible states at time k, and that it could have been 
reached from M different states at time k - 2. The VA 
decisions are computed by truncating the survivors after 
4L - 5L symbols [2]. 

The Viterbi algorithm for JMLSE is implemented in 
a method very similar to that of the single-channel VA. 
A joint state Sf-l tL = [s:,;'~~~ ~f , ; ' '~~]  is defined by ap- 
pending the primary (~,k,;'~~') and secondary (s :~; '~~~)  
states. Observe that in this case, each joint state at 
time k - 1 can transition to M 2  states at time k and 
can be reached by the same number of states from time 
k - 2. Hence, the number of states required to implement 
the optimal joint VA is MLI+La.  For high-order signal 
constellations (e.g., 16-PSK or 64QAM),  complexity re- 
duction techniques originally developed for single-channel 
MLSE, such as reduced-state sequence estimation (RSSE) 
[5 ] ,  may be employed for JMLSE. A discussion of this ap- 
proach is beyond the scope of this paper, but we expect 
that RSSE will be beneficial for the case of minimum- 
phase type channels. 
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4 Joint MAP Symbol Detection 

The MAP symbol-by-symbol decoding scheme [3] min- 
imizes the probability of a symbol error, i.e., 

J =: max p ( d ( k  - L)lr'), 
d ( k - L )  ( 5 )  

and theoretically can provide more reliable decisions than 
the VA for the same decoding delay. The MAPSD algs 
rithm maintains a MAP metric p(d:lLIrk) for every subse- 
quence of length L+1 defined by 41L = { d i ( k ) ,  . . ., d , ( k -  
L)}. By utilizing the FIR nature of the channel, (5 )  can 
be expressed as 

and the recursion to calculate the qh MAP metric 
p(d:+) is 

p(di k , L  k ;I = ;p(r(k)I@L) qi(k - 1). (7) 

The predecessor metric is given by 

qj (k  - 1 )  = ~ ( d ; - ' ~ ~ I r ~ - ' ) ,  (8) 
( j  d f - ' c L E d f o L  1 

c = M p ( r ( k ) ( r k - l )  is a normalization constant, and 
p(r(k)ld:*') is a Gaussian pdf (likelihood). The summa- 
tion defining g i (k  - 1) is performed over the MAP metrics 
of all possible subsequences at  time k - 1 from which d:lL 

could have been obtained. The corresponding detection 
algorithm was first derived in [3] for known channels, and 
was recently extended to blind equalization for unknown 
channels [SI. 

The complexity of the single-channel MAPSD algo- 
rithm is roughly the same order as that of the Viterbi 
algorithm for MLSE. (Note that although the VA main- 
tains ML states, it calculates the same number of like- 
lihoods as MAPSD with ML+' subsequences.) A sub- 
optimal MAP rule was introduced in [6] to make a de- 
cision cun the (IC - L)*h symbol (at time E )  according to 
d(k - 1,) = &(k - L )  where 

(9) 

It is possible to reduce the complexity of the MAPSD 
algorithm by introducing decision feedback. This 
MAP/decision-feedback (MAP/DF) algorithm [7] pro- 
vides a performance-complexity tradeoff , ranging from 
that of the full MAP estimator to the conventional 
decision-feedback equalizer (DFE). 

For cochannel symbol detection, an optimal JMAPSD 
algorithm (of complexity ML1+L*+2) can be obtained by 
modifying the single-channel MAPSD algorithm above, 

Figure 3: Two-stage JMAPSD algorithm. 

and it provides a BER performance comparable to that of 
JMLSE. However, a computational advantage is obtained 
when this single-stage JMAPSD structure is reconfigured 
as a two-stage algorithm, as illustrated in Figure 3. The 
first MAP section models the ML1+l subsequences of the 
primary channel; the subsequence decisions d!$& are ob- 
tained from (9) to compute the primary signal estimate 

n =O 

The residual error emjn(k) = r (k)  - i l ( k )  becomes the in- 
put of the second MAP section, which models the MLa+l 
subsequences of the secondary channel. Hence, the com- 
plexity of two-stage JMAPSD is only on the order of 
ML1+l + MLa+l.  The assumption here is that the SIR 
is sufficiently large such that the primary MAP metrics 
converge; thus, cancellation of the primary signal compo- 
nent is nearly complete, and emjn(k) contains only the 
secondary signal component (plus additive noise). 

However, by using a feedback filter to subtract a partial 
estimate of the secondary signal, the two-stage JMAPSD 
algorithm can also be operated in low-to-medium SIR con- 
ditions. The operation of this secondary feedback filter 
(SFF), also shown in Figure 3, is described below. 

1. At time k- 1, the second MAP stage computes sub- 
optimal decisions on the L2 + 1 symbols d:>';t2 us- 
ing (9). 

2. The first La secondary symbol decisions are fed en- 
bloc into the SFF (whose coefficients equal the last 
L2 values of the secondary channel) to compute 

La 

+ ~ ( I c )  = f i ,n(k  - l)&,maz(k - (11) 
n = l  

Hence, + 2 ( k )  is an estimate of the secondary interfer- 
ence from all previous symbols excluding the current 
transmitted symbol dz(k). 
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3. A t  time k, the difference signal r (k )  - + 2 ( k )  is pro- 
cessed by the primary MAP section. 

4. The secondary MAP section input emin(k)  is deter- 
mined as described earlier. 

Although the SFF may introduce some error propa- 
gation due to decision feedback, for low SIR simulations 
we obtain a significant improvement in performance. It 
should also be mentioned that this two-stage JMAPSD 
structure is different from the one proposed recently by 
the authors in [8], but is exactly equivalent in function. 

5 Computer Simulation Results 

The primary and secondary BERs were simulated for 
these nonlinear algorithms, assuming binary signaling 
(BPSK). The frequency responses (at baseband) of both 
channels are shown in Figure 4, where each channel had 
14 T,(”2-spaced impulse response samples (provided in [8]). 
We dimfine SNR = 10 log( E1 /No) and SIR = 10 log( E1/E2) 
whertb E, = E{d;(k)}  are the signal powers and N0/2 
is the noise spectral density. For the algorithms in this 
study, the signal energies were assumed to be known at 
the rmeiver; in particular, we fixed El = 1. 

The performance of the optimal M 2 L  = 212 = 
4096-state JMLSE was  compared with the subopti- 
mal two-stage JMAPSD(Pm,,, Pdj, Smop, Sa) algorithm 
where. Pmap and Pdj refer to the number of primary ( P )  
channel coefficients modeled by the MAP ,and DF sec- 
tions, respectively (similar definitions apply for the sec- 
ondary (S) channel). For example, JMAPSD(5,1,4,3) is 
a 25 .I 32-state MA4P section cascaded with a one-symbol 
DF filter for the primary channel, and a 24 = 16-state 
MAP section cascaded with a three-symbol DF filter for 
the scxondary channel 

As a benchmark, the zero-forcing DFE (without a feed- 
forward section) was simulated for cochannel demodula- 
tion (which we refer to as a joint DFF; (JDFE)), and its 
BER was determined with detected bits fed back. The 
secondary feedback mechanism was  also incorporated into 
the JDFE, and the resulting structure resembles that of 
two-stage JMAPSD in Figure 3 with each MAP/DF sec- 
tion I eplaced by a single feedback filter However, in this 
case the partial estimate of‘the secondary IS1 is obtained 
direcrly from the second DE’ section, and no separate feed- 
back filter is required as in JMAPSD (We have noticed 
that for the chosen cochannel coefficients, this JDFE fails 
to piovide acceptable BE& if the secondary feedback 
mechanism is removed.) 

The effect of the SFF at various SIRS on the two- 
stage JMAPSD(6,1,6,1) algorithm is illustrated in Fig- 
ure 5 where SNR = 30 dB. Notice that for SIR < 6 dB, 
the SFF provides more than an order of magnitude im- 
provtlment in the error rate performance From the BER 
curves in Figures 6 and 7,  observe that for SIR = 0 dB, 

0 
n 

9 
4 
c3 -40 

- -20 

\ ‘-‘ 1 

-4 -2 0 2 4 
Radian Frequency 

Figure 4: Magnitude response of the channels. 

JMLSE provides the best error rate performance, while for 
SIR = 10 dB, the two-stage JMAPSD algorithm (which 
includes a SFF) provides nearly the same performance as 
that of JMLSE (or, equivalently, single-stage JMAPSD). 
The MAP/DF approach allows for even more compu- 
tational savings in the JMAPSD algorithm, but at the 
cost of some performance degradation. Also note that 
JMAPSD(6,1,6,1) provides SNR gains of about 35 dB at 
the lower SIR and about 10 dB at the higher SIR com- 
pared to the JDFE. 

6 Conclusion 

Nonlinear joint estimation techniques for the demod- 
ulation of narrowband cochannel signals have been pre- 
sented. For known channels, the Viterbi algorithm for 
JMLSE and the single-stage JMAPSD algorithm are opti- 
mal demodulation techniques that provide the lowest pos- 
sible BE&. However, for high SIR conditions, the twcl- 
stage J MAPSD algorithm has a performance approaching 
that of JMLSE, but a t  a much lower complexity. The 
BER performance of these algorithms exhibits a (‘near- 
far” trend similar to that of multiuser detectors in CDMA 
spread-spectrum systems [9]; i.e., the best joint error rates 
are obtained when the primary and secondary signal en- 
ergies are comparable. While this work assumes perfect 
knowledge of the channel impulse responses, extension to 
unknown channels (blind demodulation) is possible; the 
corresponding cochannel blind equalization algorithms are 
proposed in [lo]. 
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Figure 6: Low SIR condition (SIR = 0 dB). 
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Figure 7: High SIR condition (SIR = 10 dB). 

1501 


