

Seminar Series on MIMO-OFDMA Cellular Systems

Module-1

OFDM/OFDMA Fundamentals – Generalised Multi-Carrier (GMC)

K. Giridhar

Professor of Electrical Engineering
Telecom & Comp. Networks (TeNeT) Group
Indian Institute of Technology, Madras
Chennai 600036
www.tenet.res.in

Version 1.0, April 20, 2006 (Ver.2.0 – updated on May 1, 2006)

OFDM/OFDMA Fundamentals - contd. 2

- Generic OFDM Tx model
 - Understanding PAPR
- OFDM -- CP based Multi-carrier Block Tx
 - Symbol-by-symbol Tx vs Block Tx
 - Single-carrier vs Multi-carrier Block Tx
 - Block Tx with Cyclic Prefix (CP), or Unique Word (UW), or Zero Padding (ZP) Which gives what?
- Simple OFDM Rx (measurement) model
 - Time domain
 - Freq. domain

OFDM Receiver Algorithms -- Recap

Block Tx flavours

- Multi-Carrier with
 - Cyclic Prefix (CP)
 - Zero-Padding (ZP)
- Single-Carrier with
 - CP
 - ZP
 - Unique-Word (UW)

FDE -- Conventional OFDM

Time & Frequency Domain Equalisation

-- for OFDM in large delay spread channels

TDE + FDE for OFDM

Single Carrier & Generalised Multi-Carrier

- Single Carrier with CP offers
 - Low PAPR
 - Freq. Diversity (since each QAM symbol "sees" the entire BW)
 - Ability for multiplexing (of different user streams on down-link)
 - However, <u>not</u> suitable for up-link
 - (a) poor link margin!
 - (b) multiplexing requires CP between every user burst inefficient
- Generalised Multi-carrier modulation for the Uplink
 - Provides narrow-banding => higher link margin!
 - Provides freq. domain multiplexing spectrally efficient
 - F-DOSS Freq. Domain Orthogonal Spread Spectrum
 - Chang & Chen, IEEE Comm. Letters, Nov.2000
 - Interleaved OFDMA (I-OFDMA) or DFT spread OFDMA
 - 3GPP LTE has adopted this for UL

K.Giridhar/2006

Generalised MC with CP - F-DOSS

F-DOSS: FDE at Base Station

Z.I.— Interleave with *K-1* zeroes to suppress noise

Single Carrier to Generalised Multi-Carrier -- Motivation

F-DOSS offers

- Ability for multiplexing Uplink users efficiently
- Low PAPR
- Low Computational complexity
- Better link margin (by a factor of N/P=K for each user)
- But, flexibility is limited
 - since each user stream "goes thro" uniformly spaced (K-spaced) subcarriers
 - also, each QAM symbol only present in K (of N) transmit samples

Interleaved OFDMA

- Some PAPR increase + increase in computational complexity
- But, ensures more flexibility
 - User stream can occupy any P out of N sub-carriers (like OFDMA)
 - Each QAM symbol is present on all the N transmit sample
 - Question: Does this "ensure" better CCI averaging in reuse-1 systems?

To mimic FDOSS

Generalised MC - Interleaved OFDMA

Samples placed on sub - carriers

Let KP=N, where N is FFT size, K – No. of uplink users

P – No. of subcarriers per user

Samples placed on sub - carriers

• Samples placed on sub - carriers

Mixing Matrix can simply be a *K* point DFT matrix!

I-OFDMA: FDE at Base Station

Summary/Pending issues (GMC)

- In GMC techniques, channel estimation requires "lumped" pilots
 - Use sys-ID in time domain to estimate CIR
 - Solve Wiener-Hopf (MMSE) equations to define LE/DFE of required order either in TD or FD
- Study the pilot-allocation in the UL of LTEs
- Understand impact of CCI on UL