EE. 5151: Communication Techniques

Aug 2019

Tutorial #1

KG / IITM

1. A low-pass signal of one-sided bandwidth of W=1.25MHz is sent as a DSB-SC signal. If the receiver uses an IF sampling scheme, with center frequency $f_{IF} = 71$ MHz, determine the <u>least</u> sampling rate required.

2. For the QCM signal with magnitude response as below, find the least possible band-pass sampling rate. Make a rough plot of the frequency response of the sampled sequence around 0Hz. Hint: Use both the band-edges (i.e., f_c+W and f_c-W in order decide the "lowest" sampling rate).

3. In the above problem, assume that the received signal has a <u>phase offset</u> of θ radians; in other words, $s(t) = m_1(t)Cos(2\pi f_c t + \theta) + m_2(t)Sin(2\pi f_c t + \theta)$. Now, what will be the time-domain representation of the sampled sequence? For the special case when $\theta = \pi/2$, what will be the samples of the received signal?

4. A QCM signal $s(t) = m_1(t)Cos(2\pi f_c t) + m_2(t)Sin(2\pi f_c t)$ has the two message signals $m_1(t)$ and $m_2(t)$ of <u>one-sided</u> bandwidth of W_1 =3KHz and W_2 =4KHz, respectively, and take f_c =31KHz.

(a) Find the minimum band-pass sampling rate $f_s=1/T_s$ that gives un-aliased samples of the two signals.

(b) Assuming that the spectrum of $m_1(t)$ has a "triangular" shape between -3KHz to +3KHz, make a labeled, rough sketch of the spectrum of the samples $m_1(kT_s)$ between -40KHz and +40KHz.

5. A dozen DSB-SC signals of one-sided (low-pass) bandwidth W = 4MHz (including a "guardband of 0.5MHz) are present between 800MHz and 896MHz, as shown below. Describe the operations (sampling, rate-conversion, filtering) that you need to do to recover Nyquist rate samples of the 7th DSB-SC signal (i.e., the signal present between 848Mz and 856MHz).

