Department of Electrical Engineering, IIT Madras

EE5141 : Fundamentals of Wireless and Cellular Communications

Tutorial #2

Nov. 2014

1. From D.Tse & P.Viswanath Chapter-2: (i) 2.2 (ii) 2.3 (iii) 2.4 (iv) 2.5 (v) 2.10 (vi) 2.14 (vii) 2.15* (viii) 2.16, and (ix) 2.17* (questions with "*" are a bit tougher, and are optional)

2. A communication link between a fixed base-station and a mobile-station uses a bandwidth of 20MHz at a carrier frequency of $f_c=1.5$ GHz. The mobile which is moving at 50kmph, experiences a delay-spread of 4µsec. Find the following:

(a) What is the Doppler spread f_D in Hz? What is the coherence time?

(b) What is the normalized Doppler spread f_DT (where T is the symbol duration)?

(c) What is the coherence band-width?

(d) At that mobile speed will be $f_DT=0.001$?

3. Recall that in the derivation of the power spectral density S(f) for the Clarke's model, the fraction of the power $p(\alpha)$ reaching the receiver in angle α is assumed to be uniform. Suppose instead we have a directional antenna with $p(\alpha) = \beta(1 + Cos(\alpha)), \alpha \in [0, 2\pi]$, with β appropriately chosen. What will be the modified expression for S(f) then?

4. From D.Tse & P.Viswanath Chapter-5: (i) 5.1 (ii) 5.2 (iii) 5.3 (iv) 5.6 (v) 5.10 (vi) 5.11 (vii) 5.13*

5. Consider a $1xN_R$ SIMO link with zero-mean, Rayleigh fading channel gains which are frequency flat. Let the complex channel gains be given by h_i , $i=1,2,...,N_R$, where $E[|h_i|^2] = \sigma^2$ for all i. Also, since they are i.i.d, we also have $E[h_i*h_j]=0$, for $j\neq i$. Given the measurement model $\mathbf{y}(\mathbf{k}) = \mathbf{h} \sqrt{E}s(\mathbf{k}) + \mathbf{n}(\mathbf{k})$, where $\mathbf{h} = [h_1 h_2 \dots h_{N_R}]$, with $E[|s(\mathbf{k})|^2]=1$, and the transmit signal energy is *E* Joules. Also, the additive noise vector $\mathbf{n}(\mathbf{k})$ is white, Gaussian, and mutually uncorrelated with the signal with $E[|n_i|^2]=\sigma_n^2$ for all i, answer the following:

(a) Show that the expression for the *average* SNR when maximal ratio combining is done on $\mathbf{y}(\mathbf{k})$ is given by SNR_{SIMO} = $N_R E \sigma^2 / \sigma_n^2$.

(b) Assuming Gaussian signaling, what is the expression for the capacity C (in bits/sec/Hz) for this SIMO system?

(c) By how much should N_R increase in order to double the value of C?

6. Repeat Q**5.** part (a) for a N_T x1 MISO link when maximal ratio transmission is employed, where each transmit antenna puts out E/N_T Joules. Among these 2 schemes, which is preferable in general and why?

7. Consider the Alamouti space-time block code described below for a 2x1 MISO link:(i) The received vector, constructed over 2 consecutive symbol intervals, is given by

$$\begin{bmatrix} y(k) \\ y(k+1) \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \\ s_2^* & -s_1^* \end{bmatrix} \begin{bmatrix} h \\ g \end{bmatrix} + \begin{bmatrix} n(k) \\ n(k+1) \end{bmatrix}$$

(ii) After conjugating the 2^{nd} measurement, the above can be re-written as

$$\begin{bmatrix} y(k) \\ y^*(k+1) \end{bmatrix} = \begin{bmatrix} h & g \\ -g^* & h^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n(k) \\ n^*(k+1) \end{bmatrix} = \mathbf{P} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n(k) \\ n^*(k+1) \end{bmatrix}$$

(iii) Noticing that the 2x2 channel matrix **P** in the above is Unitary, a simple linear operation to separate the 2 transmit symbols is given by \mathbf{P}^{H} , which operates on $[y(k) \ y^{*}(k+1)]^{T}$ from the left. Derive the SNR expression for this block coding scheme.

8. Consider a 2-phase relay-based link between a source node S to destination node D, through a relay node R. In phase 1, S sends a symbol s(k) to R. In phase 2, R sends (after some processing) the symbol to D. Let the SISO S-to-R link have channel gain g, and the SISO R-to-D link have gain h. The energy per symbol from each transmit node is limited to J Joules. Assume that knowledge of the channel gains is available at R, and that the AWGN noise terms $n_1(k)$ and $n_2(k)$ are uncorrelated and with equal variance $E[|n_i|^2] = \sigma_n^2$, for i=1,2. All the channel, signal, and noise terms are also mutually uncorrelated, and at the symbol level $E[|s(k)|^2]=1$.

(a) Determine the real scaling term β to ensure that the transmit energy constraint is met at **R**. (b) Show that the SNR at **D** is given by

$$SNR = \frac{J^2 E[|g|^2] E[|h|^2]}{(J E[|h|^2] + JE[|g|^2] + \sigma_n^2) \sigma_n^2}$$

(c) If $E[|g|^2] \gg E[|h|^2]$ and both are large when compared to σ_n^2 , find the approximate expression for received SNR at **R**. For what relationship between <u>h</u> and g will the SNR be maximized? Explain.

KG/IITM/Nov. 2014