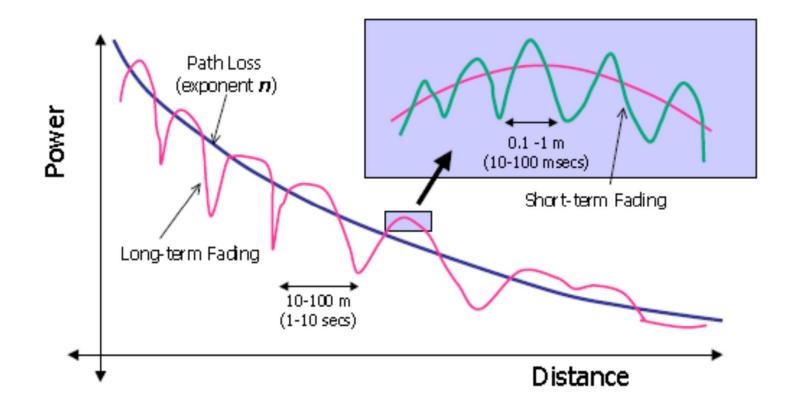


RF Fundamentals & Cellular OFDM Technology

K. Giridhar

Professor of Electrical Engineering Telecom & Networks (TeNeT) Group Indian Institute of Technology Madras Chennai 600036

www.ee.iitm.ac.in/~giri



Contents

- Part A: RF Fundamentals and Link Budget
 - A1. Terrestrial Wireless Propagation
 - A2. Path Loss Long Term, Short Term
 - A3. Noise Figure of Receiver
 - A4. Example: Communication Link Budget GSM
- Part B: OFDM Fundamentals and Overview of Cellular OFDM
 - B1. What and Why of OFDM
 - B2. Other Block Modulation Schemes
 - B3. Case Study: Channel Estimation in WiMaX DL
 - B4. Key Issues in Cellular OFDM/OFDMA
 - B5. Example: Communication Link Budget 802.16d/e

A1. Basics of Terrestrial Radio propagation

A2. Path Loss -- Long Term Losses

Free-space Propagation (n=2) → Received Power

 P_T – Power at Tx port of Isotropic Antenna inWatts Power density atG distance $d = P_T / 4\pi d^2$ Watts/m² G_T – Directivity or Gain in a particular direction Effective Isotropically Radiated Power (EIRP)= P_TG_T Received power extracted by Rx is proportional to the effective area A_R of the Rx antenna

$$P_R = \frac{P_T G_T}{4\pi d^2} A_R \text{ Watts}$$

Aside1: Effective Area of Rx Antenna

From EM Theory, the effective area A_R of the Rx antenna is related to the Rx antenna directivity G_R as follows

$$A_{R} = \frac{G_{R}}{(4\pi / \lambda^{2})} \,\mathbf{m}^{2}$$

where λ is the wavelength of carrier

Example 1: For parabolic dish antenna of diameter D

 $A_R = \frac{\pi D^2}{4} \eta$, where illumination efficiency $0.5 \le \eta \le 0.6$

Therefore, the directivity (gain) for the antenna is

$$G_R = \eta \left(\frac{\pi D}{\lambda}\right)^2$$

Aside 2: Beam-width of Antenna

3dB Beam-width \rightarrow e.g., Parabolic dish antenna

For a parabolic antenna, the width in degrees at which the gain G_T (or G_R) reduces to half of it's value is approximately given by

$$\Theta_T \approx \frac{70\lambda}{D}$$
 degrees

Note : Therefore, $G_T \propto (1/\Theta_T)^2$; If *D* doubles, then Θ_T halves, and G_T increases 4-fold

Received Power

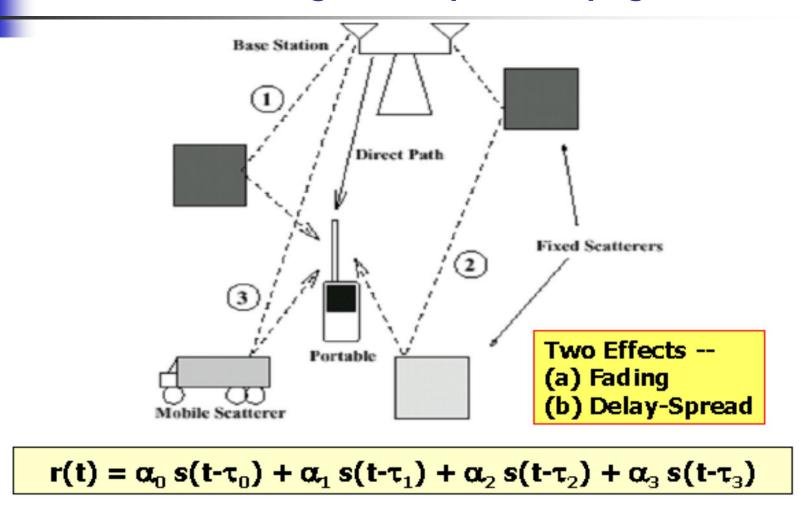
Free-space Propagation (*n*=2) → Received Power

Substitution of
$$A_R = \left(\frac{\lambda^2}{4\pi}\right) G_R$$
 gives Rx power
 $P_R = \frac{P_T G_T G_R}{(4\pi d / \lambda)^2}$ Watts

Taking 1milliwatt = 0dBm, this can be expressed in a convenient Log (dBm) scale as $P_R(dBm) = P_T(dBm) + G_T(dBi) + G_R(dBi) - L_d(dB)$ where

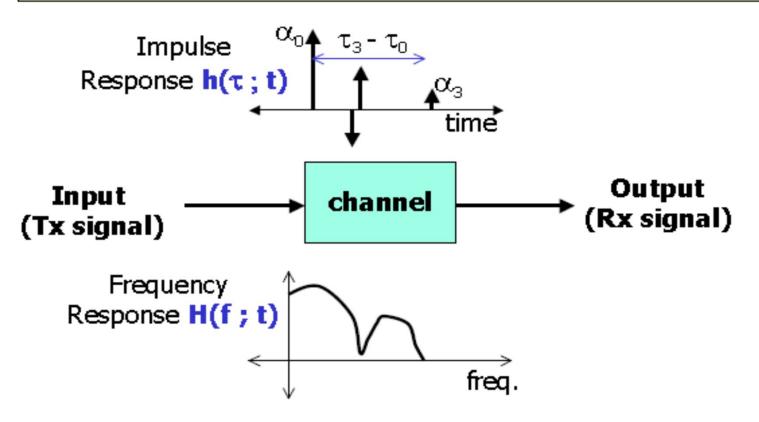
 $L_d = 10 \log_{10}((4\pi d / \lambda)^n) \text{ dB}$ -- in free space, n=2

Factors affecting Rx Power


In the presence of large-scale scatterers (buildings, usually) a random variation is expected (also called long-term fading) $P_R(dBm) = P_T(dBm) + G_T + G_R - L_d - L_{shadow} - L_{cable}$ where L_{shadow} (in dB) is an random-variable with pdf N(0, σ), and standard-deviation σ is in dB scale -- log-normal distribution; L_{cable} (in dB) is the RF cable loss (specified in dB/meter). Shadow-loss, Cable-loss, and antenna mis-alignment is sometimes clubbed into a single "Installation margin" term (in dB)

What about short-term fading?

$$P_{R}(\mathbf{dBm}) = P_{T}(\mathbf{dBm}) + G_{T} + G_{R} - L_{d} - L_{shadow} - L_{cable} - L_{fading}(\mathbf{dB})$$


Short-term Fading – Multipath Propagation

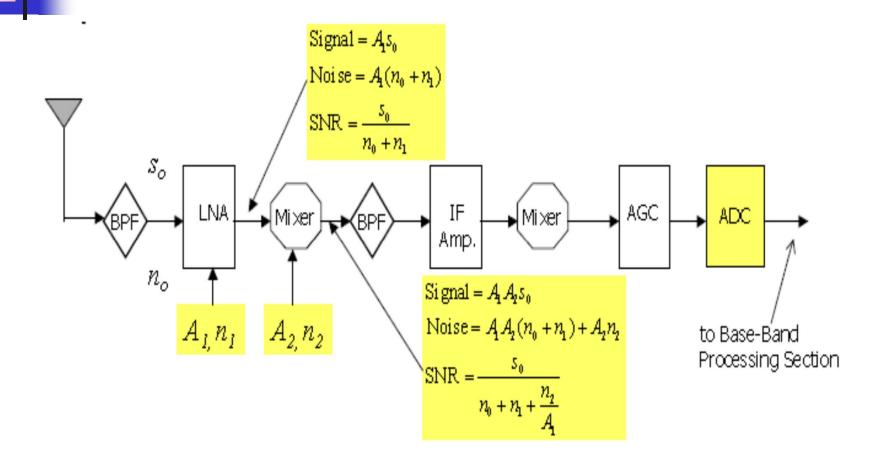
Multi-path Propagation -- contd.

 $\mathbf{r}(\mathbf{t}) = \mathbf{\alpha}_0 \, \mathbf{s}(\mathbf{t} \cdot \mathbf{\tau}_0) + \mathbf{\alpha}_1 \, \mathbf{s}(\mathbf{t} \cdot \mathbf{\tau}_1) + \mathbf{\alpha}_2 \, \mathbf{s}(\mathbf{t} \cdot \mathbf{\tau}_2) + \mathbf{\alpha}_3 \, \mathbf{s}(\mathbf{t} \cdot \mathbf{\tau}_3)$

How much Rx Power is required?

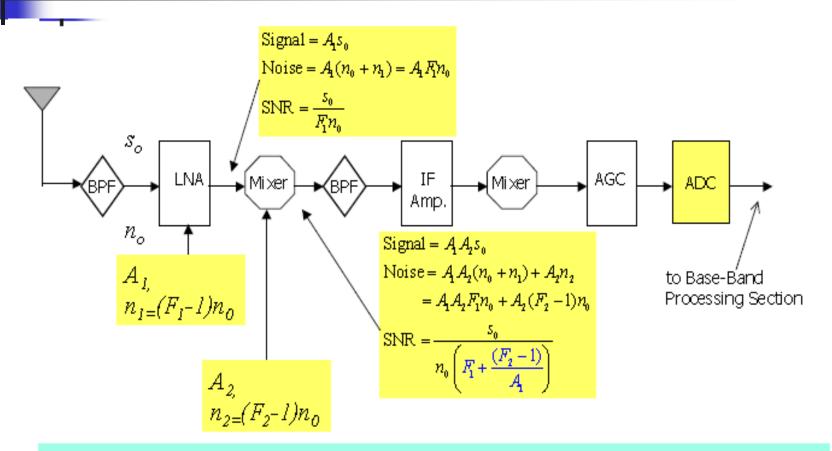
Minimum P_R (dBm) required depends on SNR needed for a target BER! This required SNR (specified in dB) is a function of: (a) Receiver Sensitivity $\Rightarrow f$ (bandwidth, RF design, Baseband algorithms, architechture, implementation) (b) Digital Modulation and Coding used for getting the target BER

- Key Question: How to relate P_R and SNR?
- Answer: Understand receiver noise power!


A3. Rx Noise Figure

Thermal noise (passives) dominates over shot noise (actives); at temperature T Kelvins, for bandwidth Δf Hz, Noise Power = $N_o \Delta f = kT \Delta f$ $k = 1.38 \times 10^{-23}$ (Boltzmann const.) Example 2: Room temp $T=300^{\circ}$ K and $\Delta f = 1$ MHz Noise spectral density $N_o = kT = -174$ dBm; Noise power $kT \Delta f = -174 + 60 = -114$ dBm; If Rx signal power $P_B = -90$ dBm (say), then SNR = 24 dB

Why first-stage (usually LNA) noise dominates?



Typical Rx Chain

Receiver Noise Figure

Thus, even 2^{nd} stage contributes very little to overall Rx noise figure!

Rx Sensitivity –

Impact of Noise Figure and Modulation used

Example 2 (contd.): Room temp $T=300^{\circ}$ K and $\Delta f = 1$ MHz Noise power $kT \Delta f = -174 + 60 = -114$ dBm; a) If Rx noise figure F = 6 dB \Rightarrow noise floor rises to -108 dBm (for RF-BB combo chip, F could reflect base-band accuracy as well!)

b) Let QPSK be used. For BER=10⁻³, QPSK requires in AWGN channels (and in the absence of FEC), an SNR=6.7dB \Rightarrow minimum signal strength required is -108+6.7= -101.3 dBm

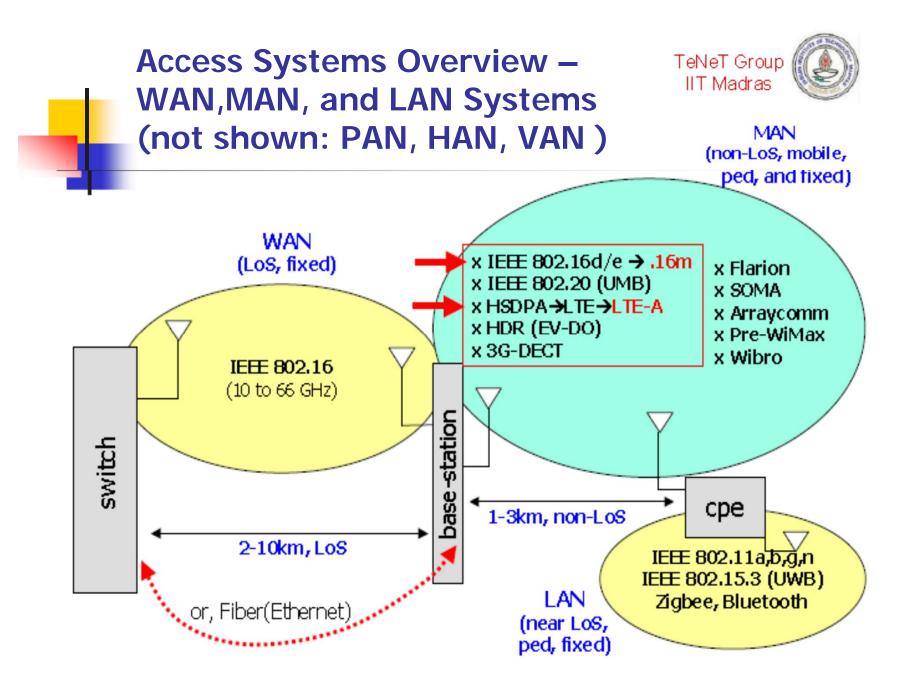
 With diversity reception, turbo-coding, etc., required SNR for QPSK to (get same BER) would further reduce

A4. Link Budget -- GSM Example

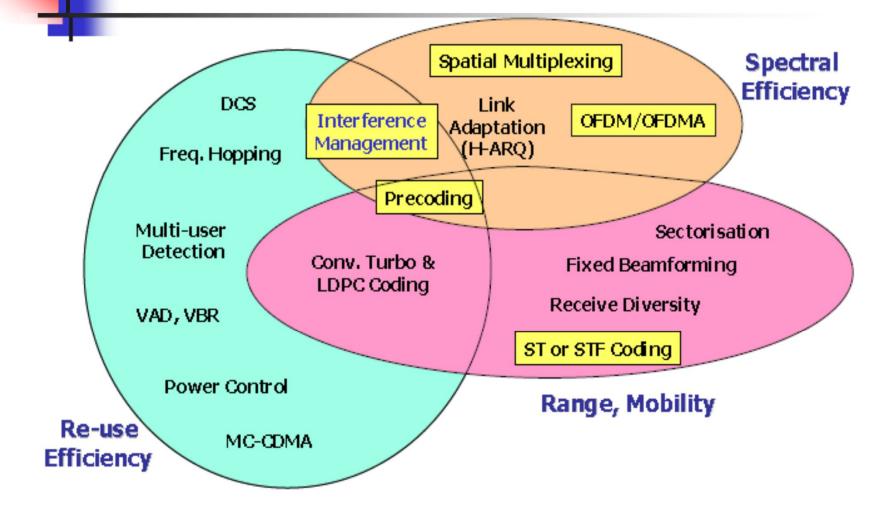
Example 2 : Communication link budget for GSM uplink Given $P_T = 100$ milliwatts, $G_T = 2$ dBi, $G_R = 15$ dBi, cable loss of 2dB, and no (zero) allowance for shadow loss or fading loss, compute the maximum link distance possible (in meters) for a GSM phone with a 5dB noise figure operating in the 800MHz band. GSM uses 200KHz channelisation (bandwidth), and requires a SNR=7dB to achieve the target BER=10⁻³. Assume free-space propagation on the uplink (i.e., exponent n=2), & $T=300^{\circ}$ K. **Recall:** $P_R(dBm) = P_T(dBm) + G_T + G_R - L_d - L_{cable}$ which conveniently $= P_T + G_T + G_R - L_{1m} - L_d - L_{cable}$ where at 1m, $L_{1m} = 10\log_{10}\left(\frac{4\pi}{\lambda}\right)^2$, and $L_d = 10\log_{10}d^n$

GSM Link Budget -- assumptions

- In noise limited coverage, link budget is easier to understand
 - Example: Frequency planned systems
 - GSM can deploy reuse 1/7, 1/4 or even 1/3
- Typical link-budget for GSM will include
 - Noise figure for BS/UE (corresponding to UL or DL)
 - Fade Margin for mobile users
 - Indoor Penetration Loss for indoor/pedestrian users
 - These will be added to Ld
 - Safe to add interference margin also for reuse 1/3, but frequency hopping and other interference averaging schemes are used to make the CCI (nearly) vanish!

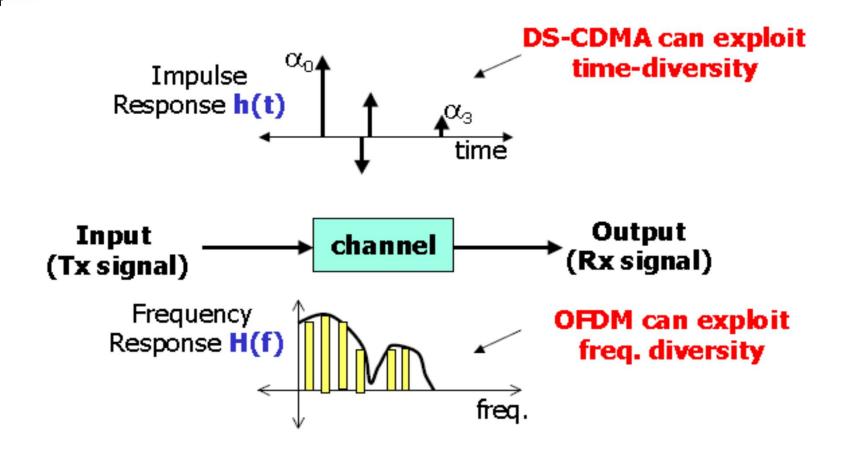

Summary for Part A

- A1. Terrestrial Wireless Propagation
- A2. Path Loss Long Term, Short Term
- A3. Noise Figure of Receiver
- A4. Example: GSM Link Budget
- Points to ponder:
 - What happens when the coverage and capacity are cochannel interference (cross-talk) limited?
 - Example: All DS-CDMA and OFDM-Cellular systems using reuse 1/1
 - Sensitivity is defined by SIR (or SINR) and not merely by SNR
 - What about sensitivity of SDR and Cognitive radios?


Contents

- Part A: RF Fundamentals and Link Budget
 - A1. Terrestrial Wireless Propagation
 - A2. Path Loss Long Term, Short Term
 - A3. Noise Figure of Receiver
 - A4. Example: Communication Link Budget GSM
 - Part B: OFDM Fundamentals and Overview of Cellular OFDM
 - B1. What and Why of OFDM
 - B2. Other Block Modulation Schemes
 - B3. Case Study: Channel Estimation in WiMaX DL
 - B4. Key Issues in Cellular OFDM/OFDMA
 - B5. Example: Communication Link Budget 802.16d/e

Key Advances in Air-Interface



Why OFDMA for Broadband Access?

- Why not CDMA or TDMA?
 - DS-CDMA cannot support high bit rates efficiently
 - TDMA (or any other single-carrier Tx) requires higher peak power
- Advantages of OFDM/OFDMA
 - Closed-loop modes in multi-user OFDM/OFDMA can more effectively "ride the wave" →multi-user diversity
 - Greater flexibility in resource allocation
- However, what about
 - PAPR, especially on the uplink?
 - Protection from co-channel interference?

DS-CDMA versus OFDM

B1. OFDM Fundamentals

Y(f)

H(f)

Continuous Time Signals and Systems

Signal: $s(t) \rightarrow$ bounded, with energy $E_s = \int_{-\infty}^{\infty} s^2(t) dt$ System (Channel): $h(t) \rightarrow$ Stable, LTI (or LTV) $\xrightarrow{s(t)} h(t) \xrightarrow{y(t)} h(t)$ Linear Convolution: $s(t) * h(t) = \int_{-\infty}^{\infty} s(\tau)h(t-\tau)d\tau = y(t)$

Continuous - time Fourier Transform :

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi f t} dt, \text{ and similarly } H(f) \leftrightarrow h(t) \qquad \xrightarrow{S(f)}$$

then, $s(t) * h(t) \leftrightarrow S(f)H(f) = Y(f)$

Discrete Time Signals and Systems

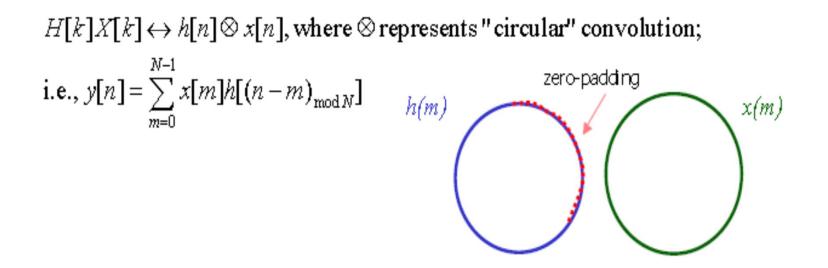
Discrete - time signal $s(nT_s) \Im s[n]$: can be infinite or finite duration; in the infinite duration case, signal can be either periodic or random. For s[n] of finite duration (say L), discrete - time FT (DTFT) pair

$$S(e^{j\omega}) = \sum_{n=1}^{L} s[n]e^{-j\omega n} \text{ and } s[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} S(e^{j\omega})e^{j\omega n} d\omega$$

Linear Convolution remains
valid for the DTFT
Discrete Fourier Transform (DFT):
If $s[n]$ is a finite sequence of length $L \le N$, then it is computationally beneficial to define
only a finite, periodic basis set $\{e^{j\frac{2\pi}{N}kn}\}$ such that
 $S[k] = \sum_{n=0}^{N-1} s[n]e^{-j\frac{2\pi}{N}kn}$, and similarly $s[n] = \frac{1}{N} \sum_{n=0}^{N-1} S[k]e^{j\frac{2\pi}{N}nk}$
Enables FFT based
efficient implementation

Matrix Notation for DFT

 $x[n] \leftrightarrow X[k]$ can also be written as


$\mathbf{X} = \mathbf{F}\mathbf{x}$

where X & x are $N \times 1$ vectors and $\mathbf{F} = \begin{bmatrix} W^0 & W^1 & W^2 & \otimes & W^{N-1} \end{bmatrix}$ with the $N \times 1$ orthogonal column vector W^1 given by $W^1 = \begin{bmatrix} 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \otimes & e^{-j\frac{2\pi}{N}} & \end{bmatrix}^T$

DFT and Circular Convolution

Similarly, the DFT for a system (FIR channel) $h[n] \leftrightarrow H[k], \{n, k \in 0, 1, \bigoplus, N-1\}$ 1. Here, $H[k] = H(e^{j\omega}), \omega = \frac{2\pi}{N}k$, where around the UC we evaluate at $k = 0, 1, \bigoplus, N-1$ 2. Now, what does "frequency domain" Y[k] = H[k]X[k] represent in "time-domain"?

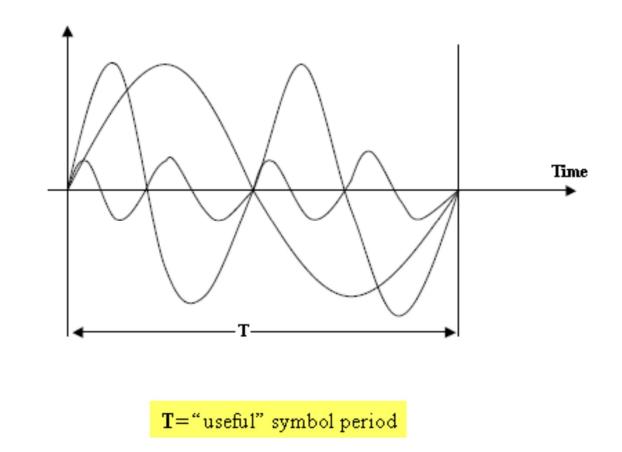
Linear vs Circular Convolution

If FFT engines are cheap, then for finite duration sequences:

(a) Implement filtering, i.e., $h[n] * x[n] using h[n] \otimes x[n] \rightarrow by$ zero-padding (this is to use CC to implement LC -- Refer: any DSP book!)

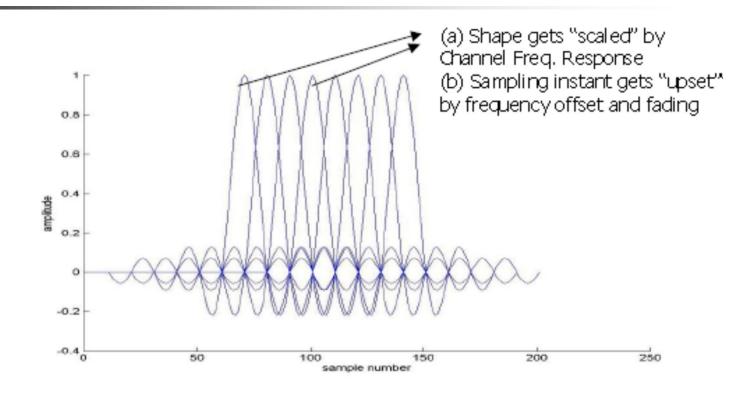
(b) In OFDM, impact of channel distortion, i.e., h[n] * x[n], is mitigated by adding a cyclic prefix to x[n], and transform this to $h[n] \otimes \mathcal{H}[n]$

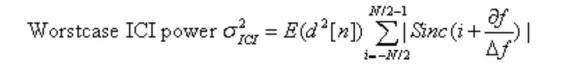
OFDM Principle – DFT Perspective


Recall that $x[n] \leftrightarrow X[k]$ can also be written as $\mathbf{X} = \mathbf{F}\mathbf{x}$, and it can be seen easily that $\mathbf{FF}^{H} = \mathbf{I}_{N \times N} = \mathbf{F}^{H}\mathbf{F}$.

 $\begin{array}{c} \mathbf{X} \xrightarrow{\mathbf{F}^{H}} \mathbf{x} \xrightarrow{+CP} \mathbf{x} \xrightarrow{h[n] \otimes \mathbb{X}[n]} \mathbf{y} \xrightarrow{-CP} \mathbf{y} \xrightarrow{\mathbf{F}} \mathbf{Y} \\ \text{and it can be shown that } \mathbb{Y}[k] = H[k] \ \mathbb{X}[k], k = 0, 1, \mathbb{K}, N-1. \\ \text{In other words,} \\ \text{(a) } \mathbf{F}^{H} \rightarrow \text{ is a bank of orthogonal Tx filters (eigen filters)} \end{array}$

(b) $\mathbf{F} \rightarrow \mathbf{is}$ a bank of orthogonal Rx filters (matched filter bank)

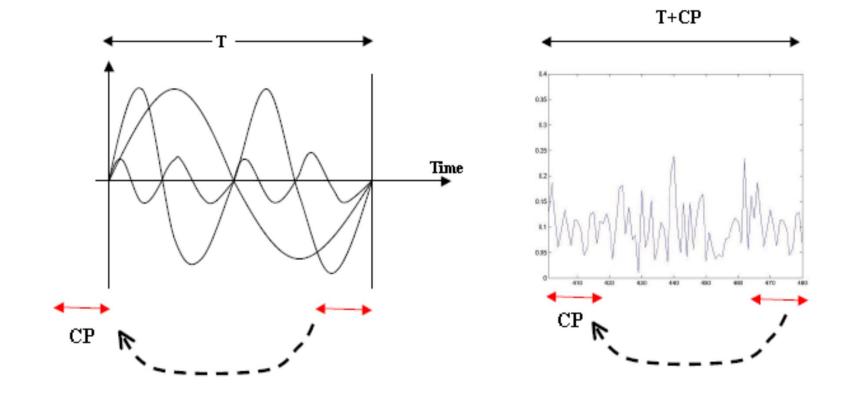



Condition for Orthogonality (in t domain)

Sync Basis Functions (in f domain)

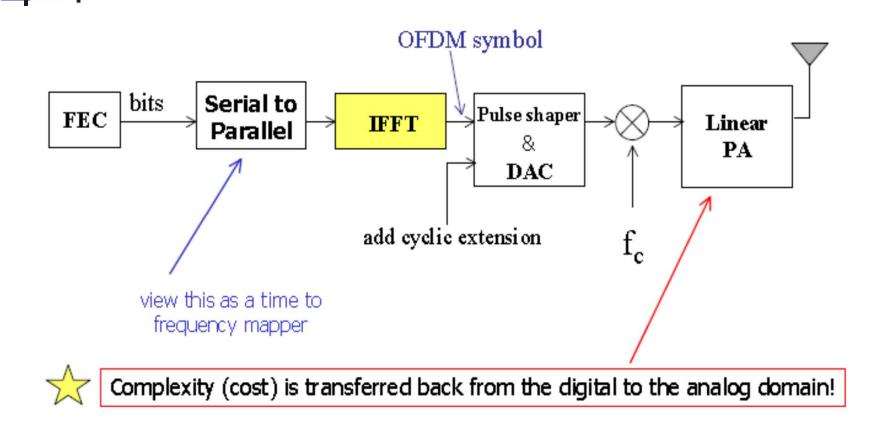
FDM vs OFDM

Courtesy: any text-book on modern digital communications

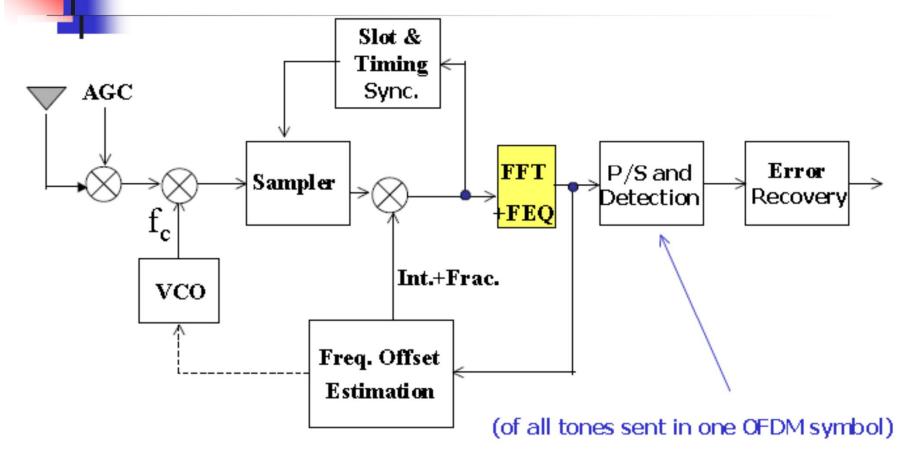

OFDM spectrum

VS.

conventional FDM spectrum



Tx Waveform (Magnitude) over an OFDM Symbol



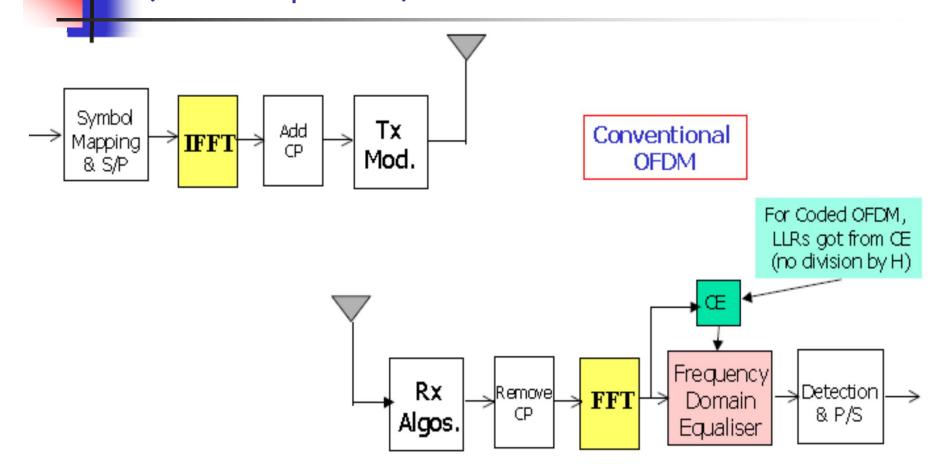
Generic OFDM Transmitter

Generic OFDM Receiver

B2. Other Block Modulation Schemes

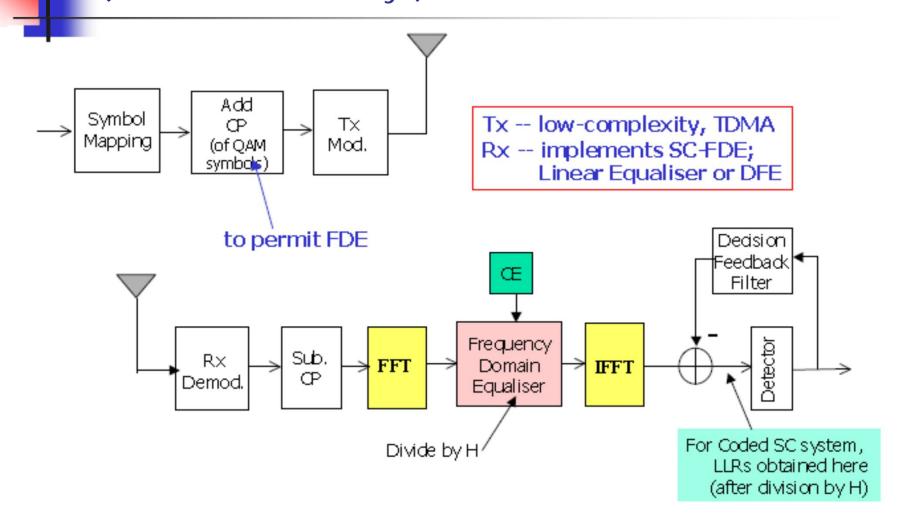
Block Tx flavours

- Multi-Carrier with
 - Cyclic Prefix \rightarrow OFDM
 - Zero-Padding
- Single-Carrier with
 - Cyclic Prefix
 - Zero-Padding
 - Unique-Word
- Generalised Multicarrier
 - Including FDOSS, DFT-spread OFDMA, etc.
 - CP-less OFDM
 - Offset QAM OFDM

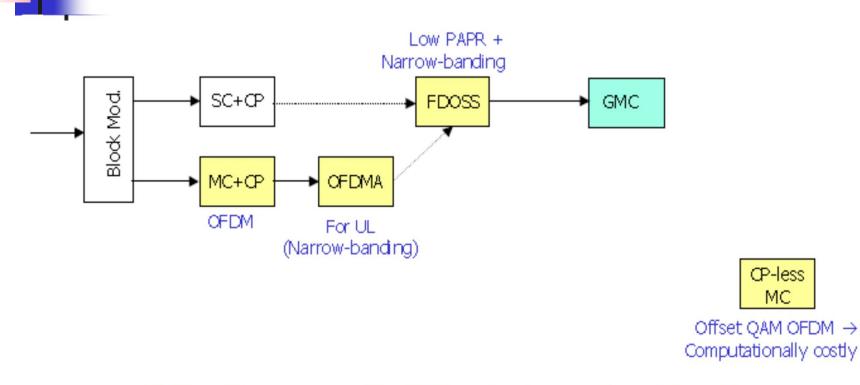


Single Carrier & Generalised Multi-Carrier (GMC)

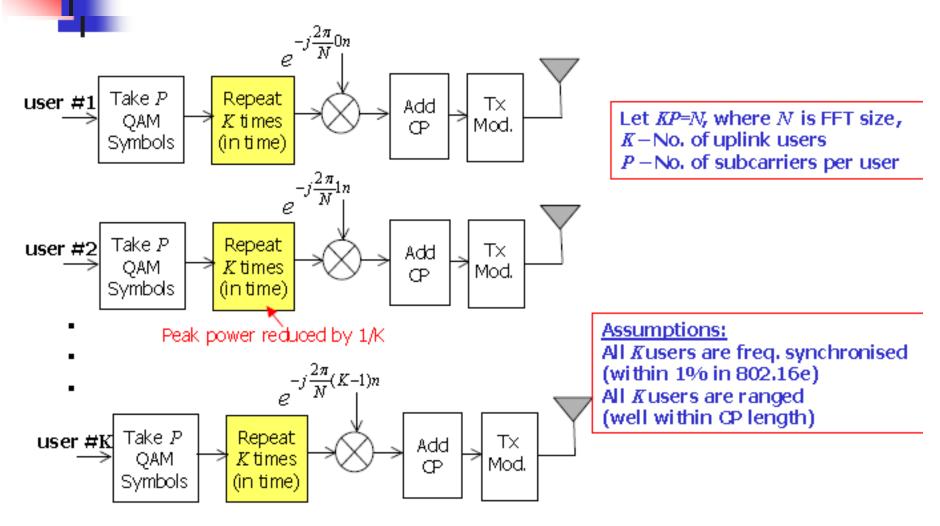
- Single Carrier with CP offers
 - Low PAPR
 - Freq. Diversity (since each QAM symbol "sees" the entire BW)
 - Ability for multiplexing (of different user streams on down-link)
 - However, not suitable for up-link
 - (a) high peak power requirement (lower link margin)
 - (b) multiplexing requires CP between every user burst (inefficient)
- Generalised Multi-carrier modulation for the Uplink
 - Provides narrow-banding => higher link margin!
 - Provides freq. domain multiplexing spectrally efficient
 - F-DOSS Freq. Domain Orthogonal Spread Spectrum
 - Chang & Chen, IEEE Comm. Letters, Nov.2000
 - Interleaved OFDMA (I-OFDMA) or DFT spread OFDMA
 - 3GPP LTE has adopted this for UL
 - Confusingly enough, LTE calls it "Single-carrier FDMA (SC-FDMA)"

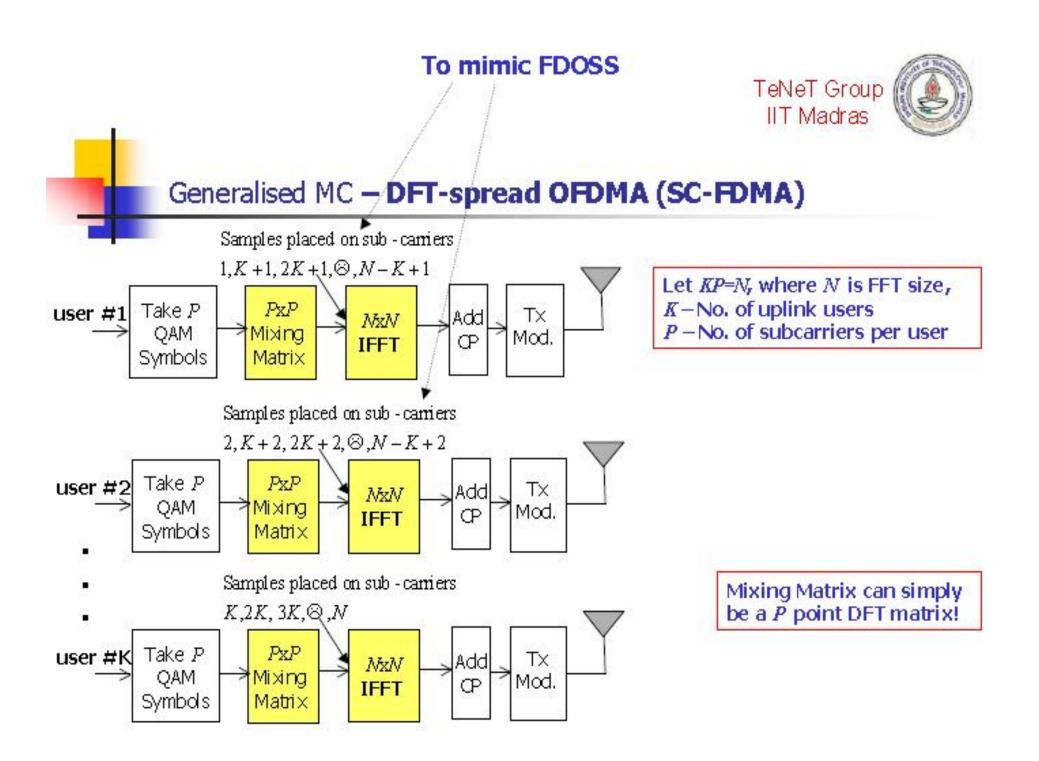


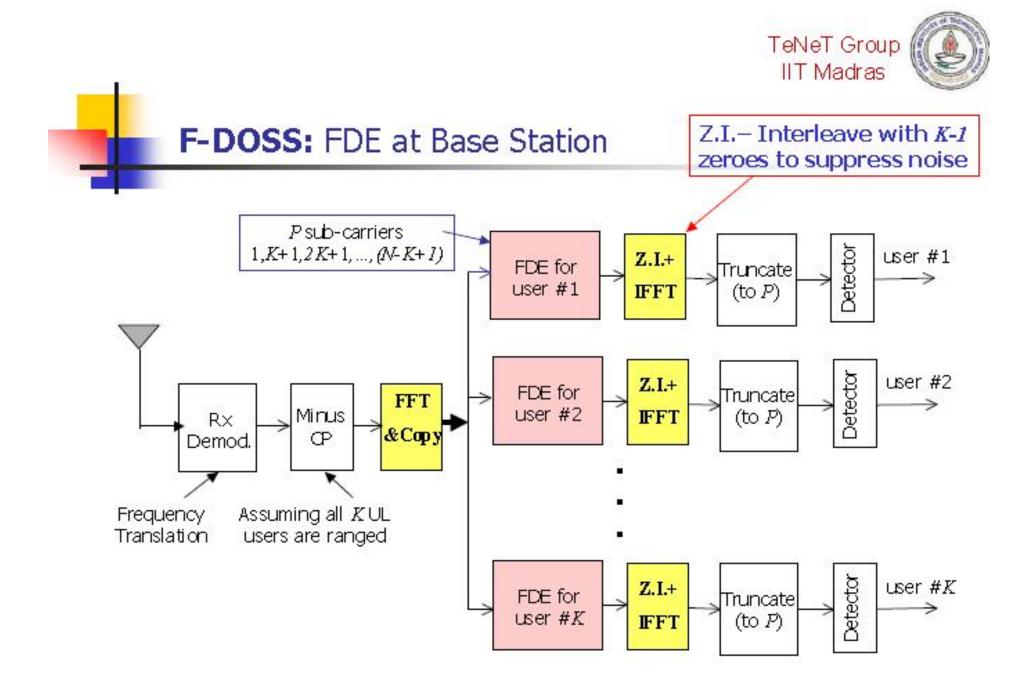
Conventional OFDM (FDE is optional)



Single Carrier Trasmission (FDE is mandatory!)


Block Modulation -- "Evolution" to GMC

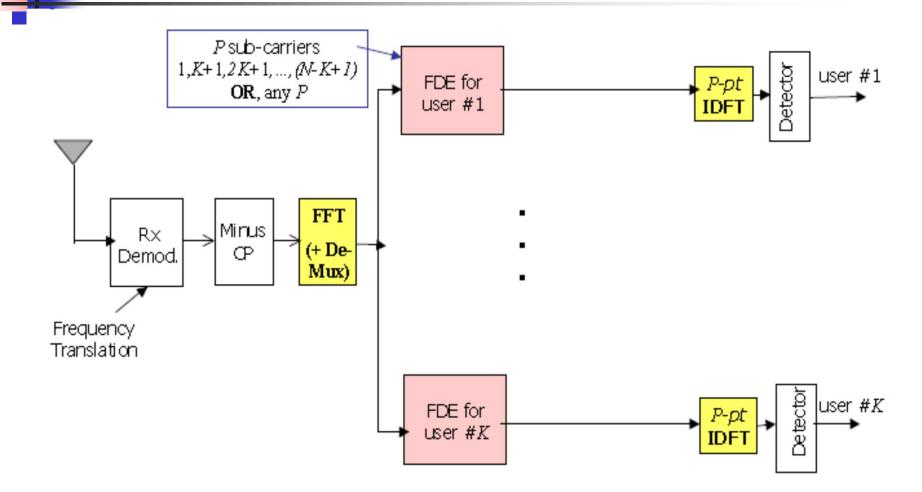



 GMC offers more flexibility in tone allocation than FDOSS

Generalised MC with CP – F-DOSS, IFDMA

I-FDMA to DFT-spread OFDMA -- Motivation

F-DOSS & I-FDMA offer


- Low PAPR (• better link margin compared to OFDMA)
- Low Computational complexity
- But, flexibility is limited
- since each user stream goes thro uniformly spaced (K-spaced) subcarriers also called "frequency comb"

DFT spread OFDMA

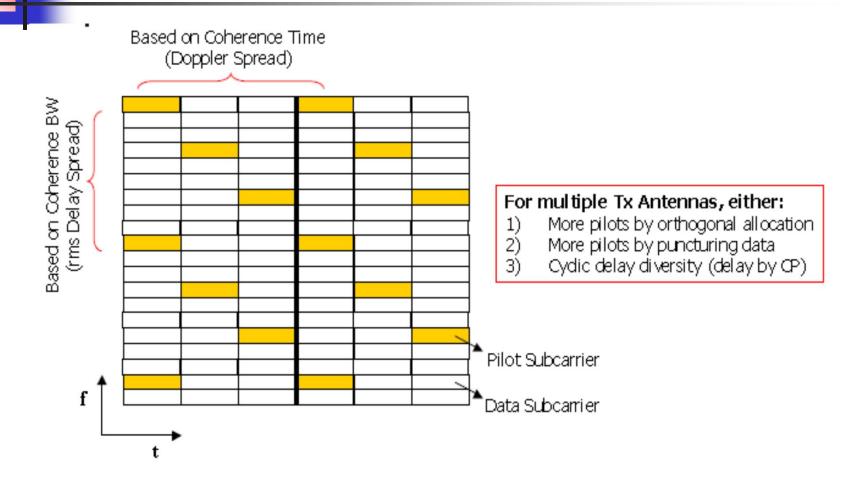
- Some PAPR increase + increase in computational complexity
- But, ensures more flexibility
 - User stream can occupy any P out of N sub-carriers (like OFDMA)
 - Question: Does this "ensure" better CCI averaging in reuse-1 systems?

I-OFDMA: FDE at Base Station

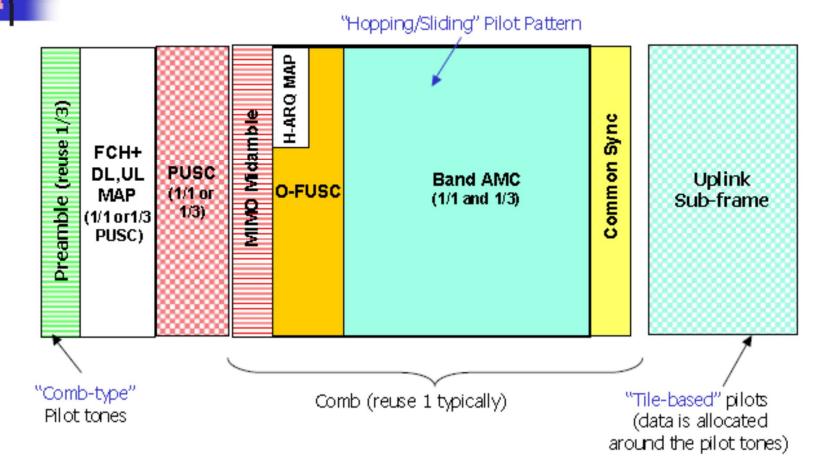
Some key issue in SC-FDMA vs OFDMA

- In coded GMC (SC-FDMA) and single-carrier systems
 - Freq. domain equalisation is a must !
 - Noise enhancement could affect LLRs required for FEQ

In GMC techniques


- CE requires "lumped" pilots
- While OFDM/OFDMA can use "embedded" pilots
- How to track fast-fading channels ?
- What about Spatial Muxing on UL?
 - Is ML receiver possible at low cost?

B3. Case-study: Channel Estimation in WiMaX Downlink



Pilot Subcarrier Placement

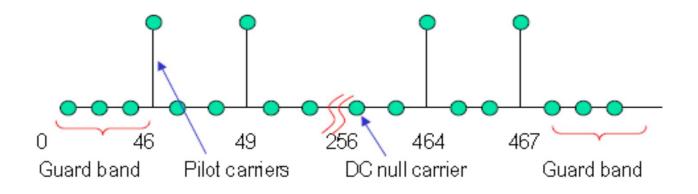
802.16e – Pilot Allocation Example

ML and LS -- CFR Estimation

 $\mathbf{Y}[k] = \mathbf{X}[k]\mathbf{H}[k] + \mathbf{W}[k]$, where $\mathbf{H}[k]$ is CFR Dropping notation k and if only P pilots are available $\mathbf{Y}_{p} = \mathbf{X}_{p \times p}\mathbf{H}_{p} + \mathbf{W}_{p}$, where noise \mathbf{W}_{p} is AWGN

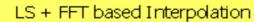
ML Criterion: $\min_{\hat{\mathbf{H}}_{P}} p(\mathbf{Y}_{P} - \hat{\mathbf{Y}}_{P} | \mathbf{X}_{P \times P})$, where $\hat{\mathbf{Y}}_{P} = \mathbf{X}_{P \times P} \stackrel{\wedge}{\mathbf{H}}_{P}$ Assuming (or approximating) \mathbf{W}_{P} as white, ML reduces to LS problem *LS Criterion*: $\min_{\hat{\mathbf{H}}_{P}} (\mathbf{Y}_{P} - \hat{\mathbf{Y}}_{P})^{H} (\mathbf{Y}_{P} - \hat{\mathbf{Y}}_{P})$, where ^H denotes Hermitian

LS Estimation - contd.


The LS problem $\min_{\hat{\mathbf{H}}_{P}} (\mathbf{Y}_{P} - \hat{\mathbf{Y}}_{P})^{H} (\mathbf{Y}_{P} - \hat{\mathbf{Y}}_{P})$ yields the well known LS/ML solution :

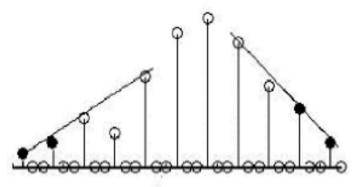
$$\stackrel{\wedge}{\mathbf{H}}_{LS,P} = (\underbrace{\mathbf{X}}_{Pseudo-Inverse of \mathbf{X}_{P}}^{H} \underbrace{\mathbf{Y}}_{P} \stackrel{\rightarrow}{\Rightarrow} \frac{Y[n]}{X[n]}, n \in P$$

For the other N-P data subcarrier locations, linear/spline or other interpolation techniques are used to determine $\stackrel{\circ}{\mathbf{H}}$


PUSC Example -- Preamble and Pilot Patterns (N=512)

"Well known" Channel Estimation Schemes (freq. / time):

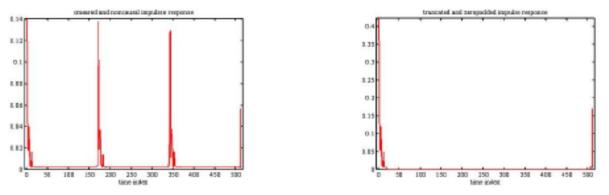
- 1) LS + Linear Interpolation 2)
 - 2D-MMSE


ЗŚ

CE Example: Preamble of 802.16d/e FFT Based Interpolation – with Windowing

- Initially make an LS estimate on pilot tones
- Extrapolate LS estimate into guard bands by fitting a line through estimates near the edge

 $W[n] = \beta - (1 - \beta) \cos(2\pi \frac{n}{N-1}), n = 0, 1, \bigoplus N-1,$

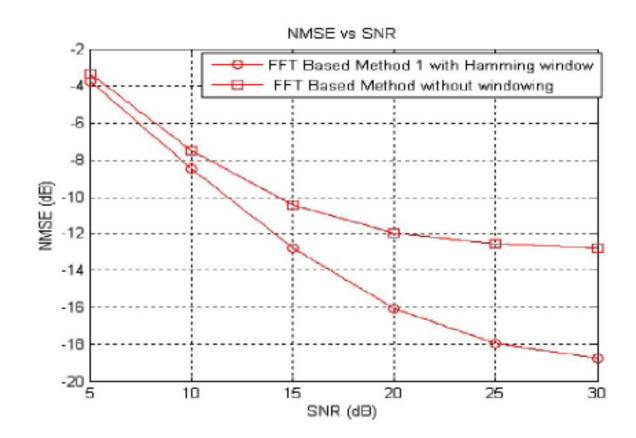

and Hamming window parameter $0 \leq \beta \leq 1$

To reduce TD leakage -- apply a window function (say, Hamming window) before taking IFFT

FFT Based Interpolation - contd.1

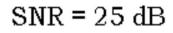
We get a smeared and non-causal impulse response

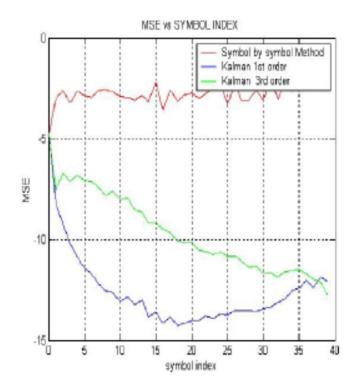
 Keep first L samples and last L₁ samples and fill remaining samples with zero

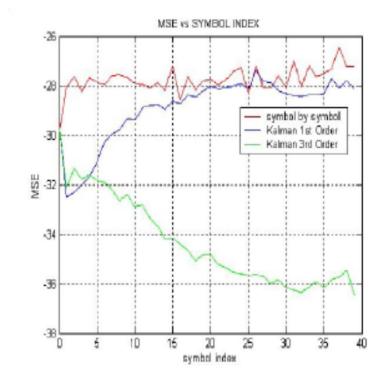

- Select *L* based on the maximum tap delay (or pdp) of channel

- Choice of L₁ depends on the tap weight of first tap

Take FFT and unwindow it to get the final estimate Ĥ[n]

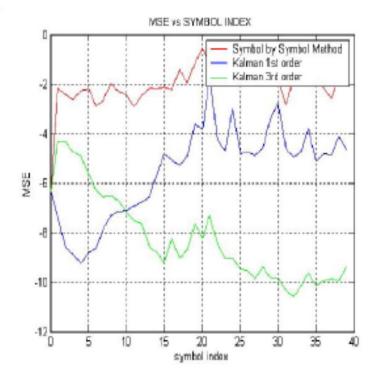

NMSE with and without windowing -- in FFT based Interpolation

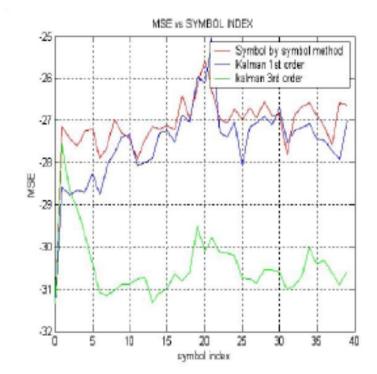




NMSE vs Symbol Index with 1st order and 3rd order AR Model -- for **10Hz** Doppler

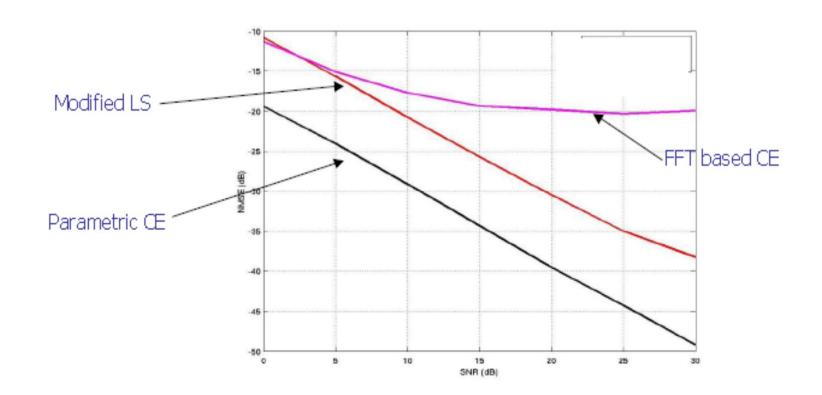
SNR = 0 dB





NMSE vs Symbol Index with 1st order and 3rd order AR model -- for **70Hz** Doppler

SNR = 0dB



SNR = 25 dB

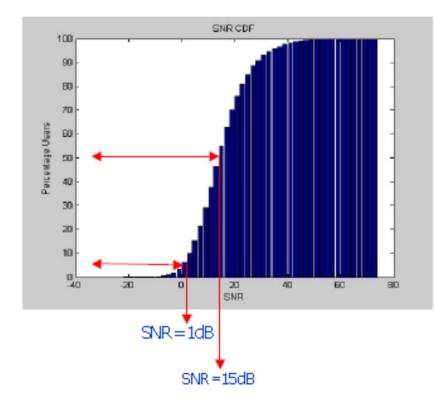
Channel Estimation – Ridiculous to the Sublime

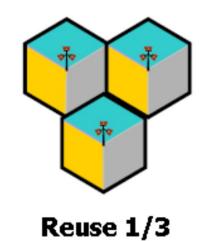
B4. Key Issues in Cellular OFDM/OFDMA

Sources of Distortion in OFDM/OFDMA

Impact of the following on measurement model

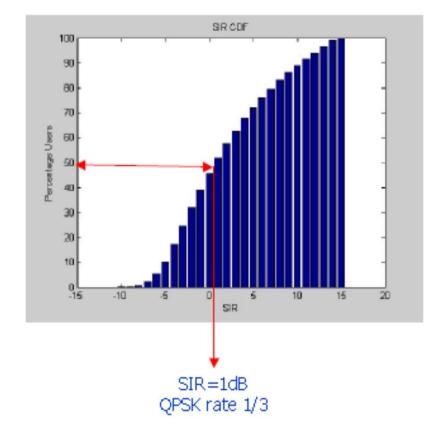
- Additive, band-limited noise
- RF distortion (I-Q imbalance, clipping, IM, etc)
- Frequency offset
- Timing error
- In Mobile Broadband Cellular OFDM/OFDMA, we have
 - Delay spread
 - accentuated due to large band-width
 - Doppler spread
 - due to mobility
 - Co-channel interference
 - due to cellular nature

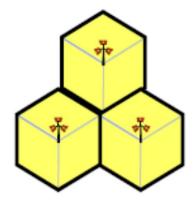



Interference Management is the Key!

- Co-channel interference (CCI) in OFDM needs to be managed at
 - Antenna level (using multiple antennas)
 - Channel processing level (interference aware CE)
 - Detection level (interference nullers/combiners)
 - Decoding level (CCI aware decoders)
 - MAC level
 - Scheduler level
 - Co-operative communications

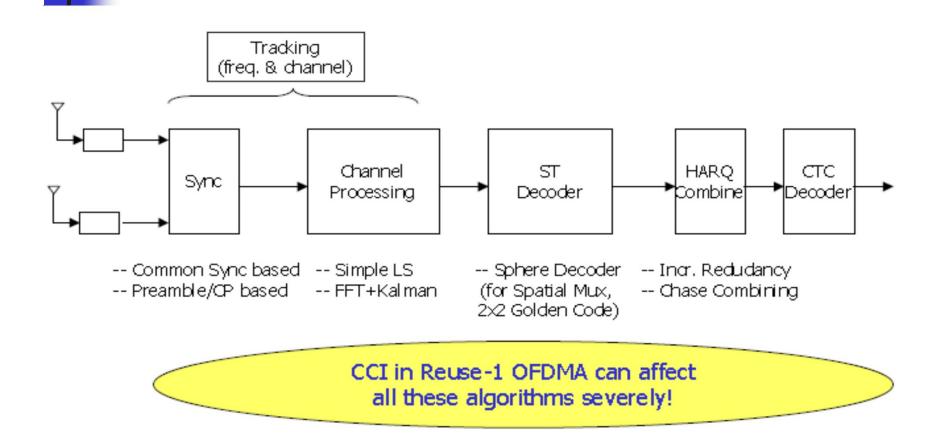
CDF of SNR for Reuse-1/3 Cellular





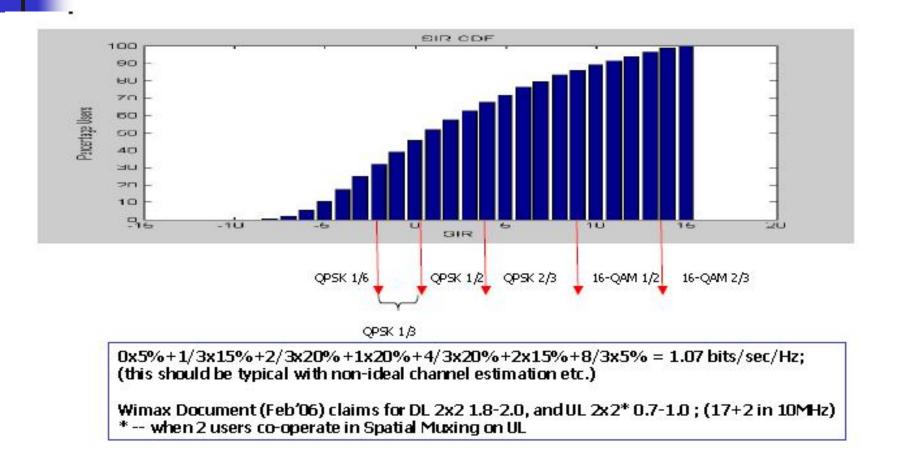
- -- 75% of users have SNR>10dB
- -- Only 3% gave SNR < 0dB
- -- Highest SNR can be ~ 35dB
- -- Similar to single-cell deployment

CDF of SIR for Reuse-1/1 Cellular

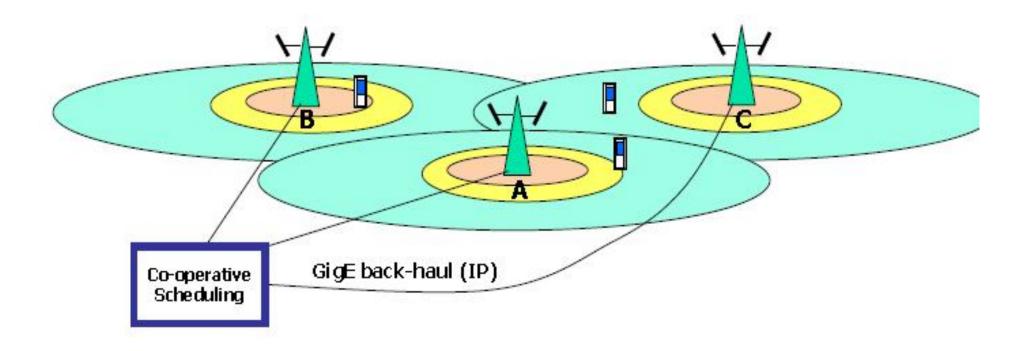


Reuse 1/1

Nearly 50% of users have SIR < 0dB Highest SIR is only 15dB About 35% of users see one strong CCI



Downlink Rx (Mobile Station)


Impact on System Capacity

- Interference Management is possible using BS co-operation
- Exploit IP back-haul to BS; Semi-centralised "upper MAC"

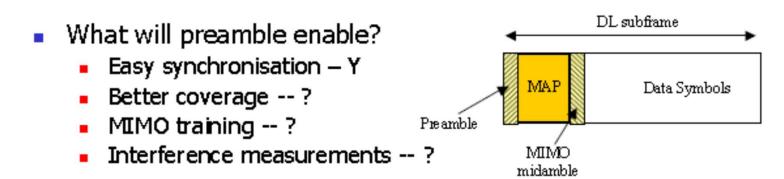
B5. Example – Link Budget for 802.16d/e (to be developed "live")

Summary of Part B

- OFDM Fundamentals and Overview of Cellular OFDM
 - B1. What and Why of OFDM
 - B2. Other Block Modulation Schemes
 - B3. Case Study: Channel Estimation in WiMaX DL
 - B4. Key Issues in Cellular OFDM/OFDMA
 - B5. Example: Communication Link Budget 802.16d/e

What is IMT-advanced going to be?

- Spectrum identified in WRC-2007
- IMT-A to be ratified by middle of 2010


Some Learnings about 802.16m & LTE-A

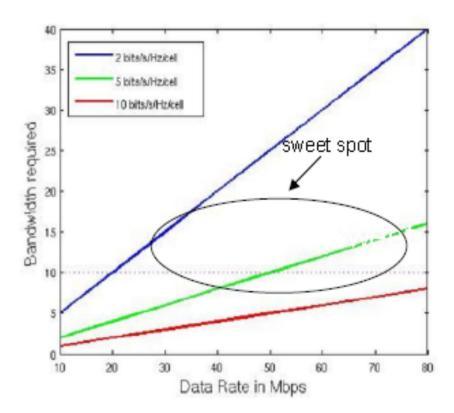
- Air interface
 - Downlink : OFDM/OFDMA, TDD and FDD
 - Uplink : OFDMA and SC-FDMA ?
 - "Mandatory" : Packet Switching, Turbo/LDPC with HARQ, 2x2
 - Baseline, Mobility support, do better than IMT-A requirements
 - Multiple antenna techniques include:
 - Virtual antenna and/or STBC, STFC
 - Single user (SU) Spatial Mux and DL, Multi user (MU) SM on UL
 - Precoding (Open-loop, Closed-loop, SU, MU)
 - Co-operative MIMO
 - Relaying
 - "Optional" : Co-operative Relaying, Ad-hoc modes, >4 Tx Ants per sector at BS, >2 Tx Ants at MS
- Fundamental air-interface issues are currently being discussed

Issues in/with BWA Standards (LTE & WiMaX)

- Pilot sub-carriers can be
 - Localised or Distributed
 - At cell-edge, 'pilots-on-pilots' OR 'pilots-on-data'
- Data sub-carriers can be
 - No power control; e.g., MAP symbols
 - With power control → fractional freq. reuse (FFR)

User Requirements – Indian Perspective

- Based on the unified views expressed by the various cellular operators of India
 - Broadband Wireless Consortium of India (BWCI)
 - A strategic initiative of Centre of Excellence in Wireless Technology(CEWiT)
- BWCI has enunciated the service and technology requirements for India which IMT-A should address
 - please also see <u>http://www.cewit.org.in/docms/ibwsi.pdf</u>
- Requirements reflect the fact that wireless access will the only way by which broadband can reach 100million + Indian users!



Indian Scenario – contd.

- Serve about 900 subscribers/cell/per operator that covers different market segments
- Cell radius varying between 100m and 20 Km
- Provide broadband services with limited spectrum per operator
 - FDD 10+10=20MHz per operator
 - TDD with 20MHz per operator (with sync between operators)
- Nearly 85% of the subscribers will be nomadic and indoors
- Need a minimum useful capacity per cell (per op.) of about 100 Mbps DL and 40 Mbps UL

Usage and Capacity

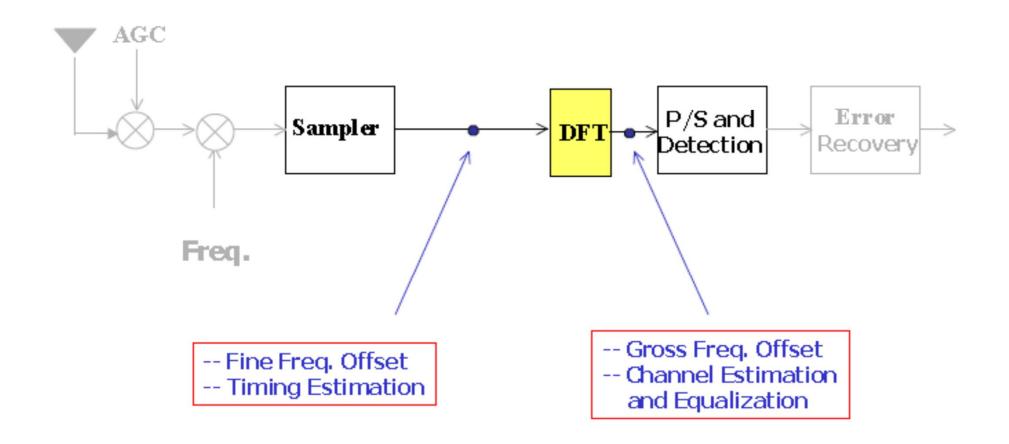
Example: With a FDD bandwidth of 10+10 MHz, spectral efficiency required is:

 $DL \rightarrow 100/10 = 10 \text{ bits/sec/Hz/cell}$

UL \rightarrow 40/10 = 4 bits/sec/Hz/cell

Avg. ~ 7 to 8 bits/sec/Hz/cell

Reading Material


K. Giridhar

Professor of Electrical Engineering Telecom & Networks (TeNeT) Group Indian Institute of Technology Madras Chennai 600036

www.ee.iitm.ac.in/~giri

OFDM Receiver Algorithms -- Recap

Impact of Large Freq. Offset (Δf)

$$\hat{d}_{k,i} = H_{k,i}d_{k,i} + n_{k,i}$$

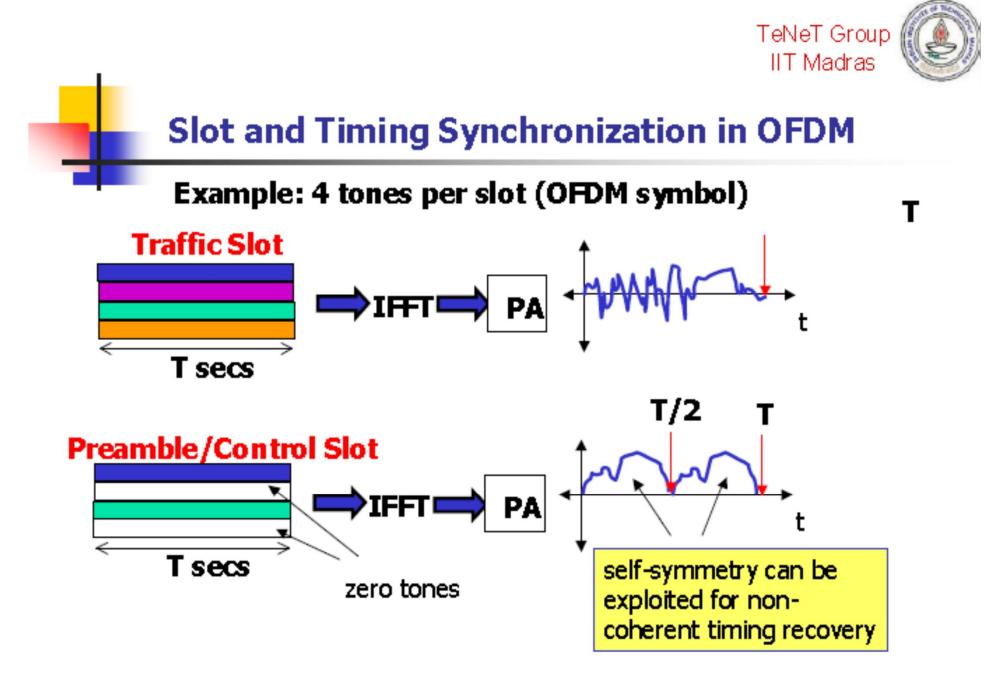
$$\hat{d}_{k,i} = e^{j2\pi k\Delta f T_s}H_i d_{k,i} \frac{\sin(\pi\Delta f T)}{N\sin(\pi\Delta f T/N)}e^{j\pi\Delta f T(N-1)/N} + I_{k,i} + n_{k,i}$$

Residual Carrier Frequency offset

- Preamble can be used to estimate and compensate for the carrier freq offset during the initial synchronization procedure
- If the residual freq offset is assumed to be much smaller compared to subcarrier spacing, then at ith

$$\hat{d}_{k,i} \approx e^{j2\pi k\Delta fT_s} H_{k,i} d_{k,i} + n_{k,i}$$

- Constant phase shift in all sub carriers
- This offset is tracked using known pilot symbols in every OFDM symbol


Frequency Offset

Carrier recovery and tracking critical for OFDM

- Offsets can be comparable to sub-carrier spacing in OFDM
- Non-coherent detectors possible with differential coding

Residual freq. offset causes

- constellation rotation in TDMA
- loss of correlation strength over integration window in CDMA (thereby admitting more CCI or noise)
- increased inter-channel interference (ICI) in OFDM
- OFDM can easily compensate for gross freq. offsets (offsets which are an integral multiple of sub-carrier width)

Impact of Sampling Clock Offset

- Sampling frequency offset induces time-variant timing offset
 - Varies slowly across several frames, usually
 - Let τ_k be the timing offset of k^{th} OFDM symbol
 - The induced phase rotation is proportional to the subcarrier index "i"
 - When the timing offset exceeds the sampling interval, the FFT window needs to be shifted.
 - Known pilot symbols in every OFDM symbol are again used to track this offset

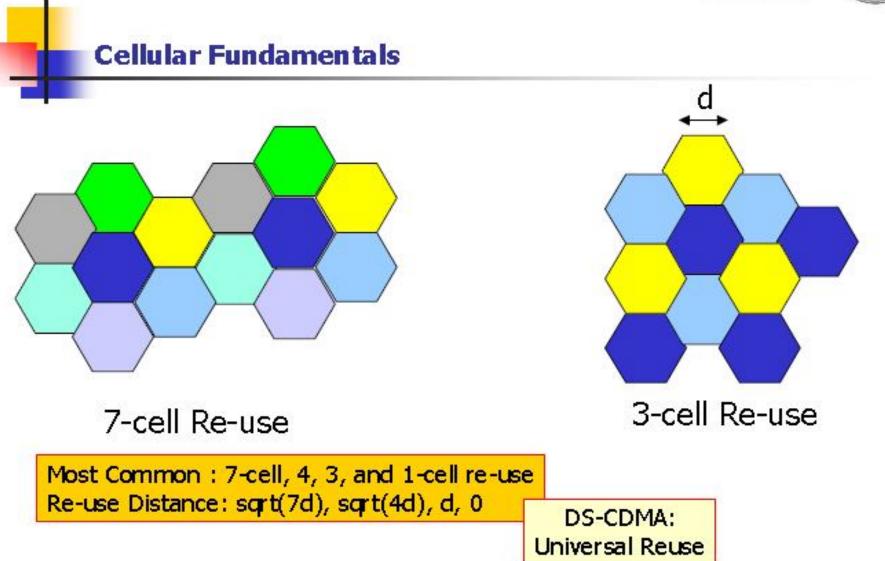
$$\hat{d}_{k,i} \approx e^{j2\pi i \tau_k / N} H_{k,i} d_{k,i} + n_{k,i}$$

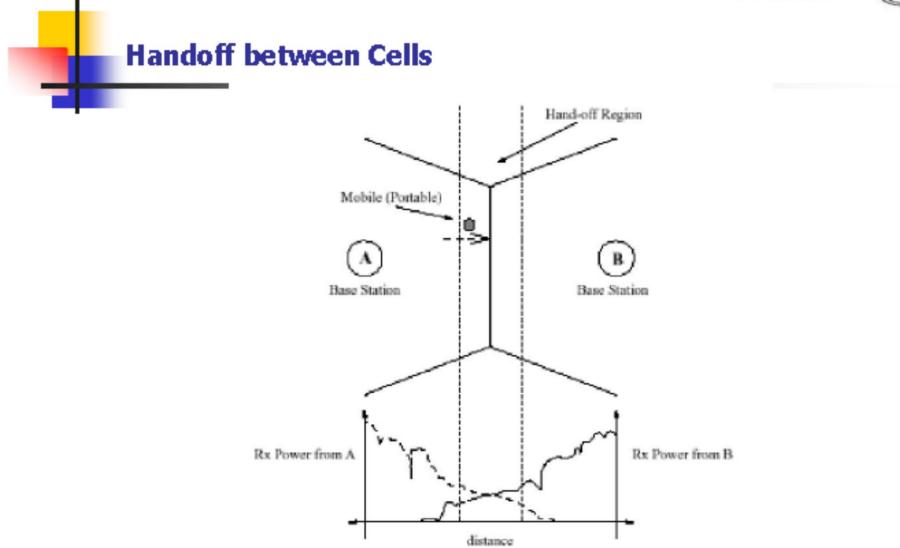
Timing Synchronisation

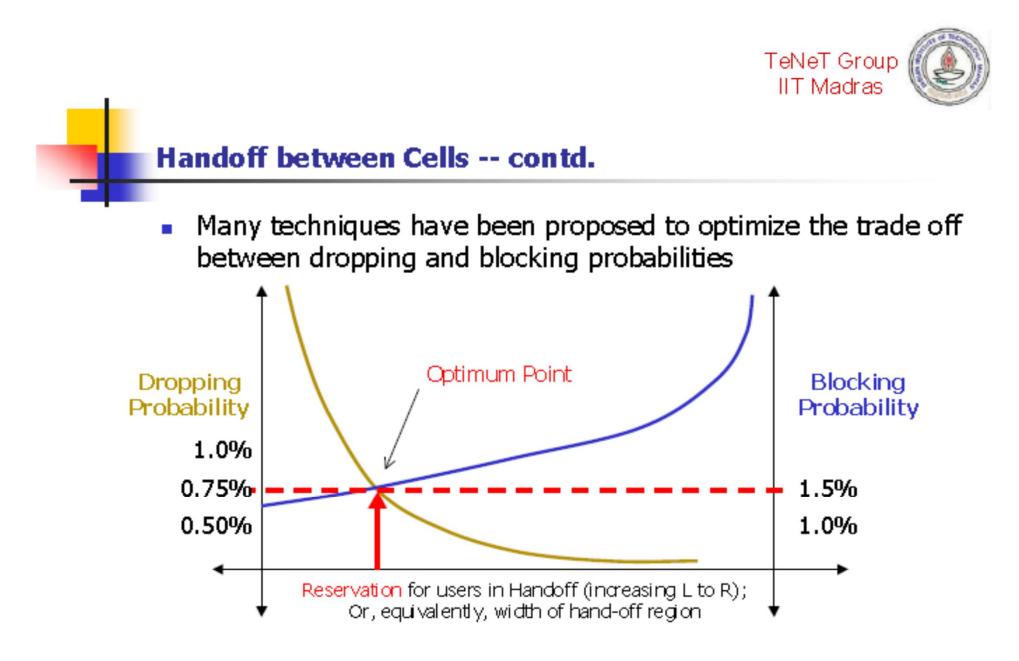
- Timing recovery (at symbol level) is easily achieved in OFDM systems
 - Can easily overcome distortions from delay spread
 - Can employ non-coherent timing recovery techniques by introducing self-similarity
 - => very robust to uncompensated frequency offsets
 - If cyclic prefix is larger than the rms delay spread, range of (equally good) timing phases become available
 - => robust to estimation errors

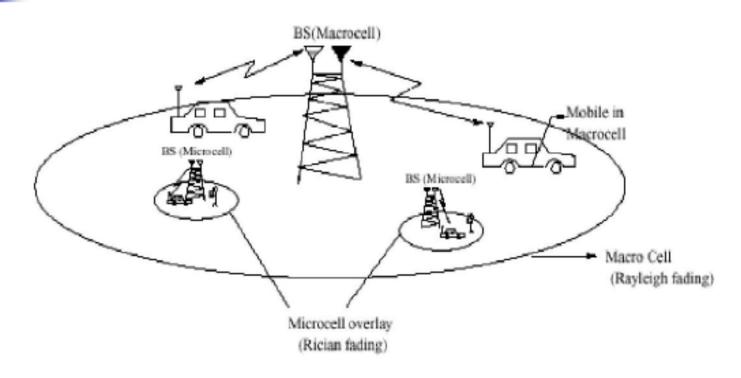
Comparing <u>Complexity</u> (of TDMA, DS-CDMA, & OFDM Transceivers)

_	TDMA	CDMA	OFDM			
Timing Sync.	Easy, but requires overhead (sync.) bits	Difficult, and requires sync. channel (code)	Very elegant, requiring no extra overhead			
Freq. Sync.	Easy, but requires overhead (sync.) bits	More difficult than TDMA	Gross Sync. Easy Fine Sync. is Difficult			
Timing Tracking	Modest Complexity	Complexity is high in Asynchronous W-CDMA	Usually not required within a burst/packet			
Freq. Tracking	Easy, decision-directed techniques can be used	Modest Complexity (using dedicated correlator)	Modest complexity			
Channel Equalisation	Modest to High Complexity (depending on bit-rate and extent of delay-spread)	RAKE Combining in CDMA usually more complex than equalisation in TDMA	FDE is arguably easy – but careful choice essential			
Analog Front-end (AGC, PA, VCO, etc)	Very simple (especially for CPM signals)	Fairly Complex (power control loop)	Complexity or cost is very high (PA back-off is necessary)			


TeNeT Group IIT Madras


Comparing <u>Performance</u> (of TDMA, DS-CDMA, & OFDM Transceivers)


	TDMA	CDMA	OFDM			
Fade Margin (for mobile apps.)	Required for mobile applications	Modest requirement (RAKE gain vs power- control problems)	Required for mobile applications			
Range	Very easy to increase cell sizes	Range increase by reducing allowed noise rise (capacity)	Difficult to support large cells (PA , AGC limitations)			
Re-use & Capacity	Modest (in TDMA) and High in MC-TDMA	Modest	Re-use planning is not crucial, but will help			
FEC Requirements	FEC optional for voice	FEC is usually inherent (to increase code decorrelation)	FEC is vital even for fixed wireless access			
Variable Bit-rate Support	Low to modest support	Very elegant methods to support VBR & VAD	Powerful methods to support VBR (for fixed access)			
Spectral Efficiency	Modest	Poor to Low	Very High (& Higher Peak Bit-rates)			



Overlay of Micro on Macro Cells

 \bigstar Overlays could increase capacity;

Alternatively, repeaters can increase coverage

Spectral Efficiency of 2G Standards

	-				
micro macro		Name	Bandwidth	Bit-rate	Efficiency
	<i>.</i> -	IS – 136	30 KHz.	48.6 Kbps	1.62
	Į.	GSM	200 KHz.	270.8 Kbps	1.35
	L	IS – 95	1.25 MHz.	9.6 Kbps	0.007 x N users
	ſ	CT2	100 KHz.	72 Kbps	0.72
	- ۱	DECT	1.728 MHz.	1.152 Mbps	0.66
	۰.	PHS	300 KHz.	384 Kbps	1.28

IEEE 802.11b -- 1/22 to 11/22 = 0.045 to 0.50; 802.11a -- 54/20=2.70 bits/s/Hz

Multi-antenna techniques can yield much higher spectral efficiencies

A (the?) Golden Rule

- What is a fair yard-stick to compare various wireless communication standards ?
- Number of bits/sec/Hz per-cell site for a given QoS
 - "Cherry-picking" of good users should be avoided
 - Careful system-level simulation studies are required
- It is also essential to bring in cost (per connection)

Factors Affecting Golden Rule

Co-channel Interference

- in TDMA/FDMA -- this determines the re-use distance, and thereby, system capacity
- in CDMA -- this determines the number of users that can be supported by a single base-station

Control Overheads

- gross bit-rate versus actual pay-load
- more control overhead could give more deployment flexibility and/or more services

TDMA, CDMA, and OFDM based Standards

- Time Division Multiple Access (TDMA) is the most prevalent wireless access system to date
 - GSM, ANSI-136, EDGE, DECT, PHS, Tetra
- Direct Sequence Code Division Multiple Access (DSCDMA) became commercial only in the mid 90's
 - IS-95(A,B,HDR,1x...),cdma-2000(3GPP2), W-CDMA (3GPP)
- Orthogonal Frequency Division Multiplexing (OFDM) is new kid to the wireless block
 - IEEE 802.11g,n, UWB
 - IEEE 802.16d/e, IEEE 802.20
 - 3GPP LTE, 3GPP2 Rev.C, 802.16n, Advanced IMT-2000,....