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EE 504 : Adaptive Signal Processing 
 

Tutorial 1 
KG/IITM                      Aug. 2007 

 

Estimation Theory – Bias, CRLB, & Conditional Mean 

1. Random variable X ~ N (µ, σ2 ) is measured using samples {x1, x2, …, xN}. Consider the following estimator for µ: 
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       where a≥0. For what value of a is ˆ ( )Nµ an unbiased estimator of µ ? 
 

2. Suppose {z1, z2, …, zN} are samples from a Gaussian distribution with unknown mean µ, and unknown variance σ2 . 
We consider the following sample mean and sample variance estimators (assuming ergodicity), namely: 
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        Is 
2σ̂ an unbiased estimator of 

2σ ? (Hint: Show that 
2 2ˆ[ ] ( 1) /E N Nσ σ= − .  ) 

 

3. Suppose that N independent observations { x1, x2, …, xN} are made of an r.v. x that is Gaussian with pdf 
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Case1: Only µ  is unknown. Derive the Cramer-Rao Lower Bound (CRLB) of 2 ˆ[ ( )] for E Nµ µ µ µ= −% %  for an 

unbiased estimate of µ. 
Case2: Only σ is unknown. Find CRLB for 2 2 ˆ[( ( )) ] for E Nσ σ σ σ= −% % . 

Case3: Both µ  and σ are unknown. Here, compute the inverse of the Fischer Information Matrix, i.e.,  
 

1 2( ),where [ ]µ σ− =J θ θ  (1.3) 

 

4. If  xMx1 and yNx1 are individually Gaussian, and are also jointly Gaussian random vectors with 

[ ], [ ],  and [( )( ) ]Hx y xy x yE E E= = = − −m x m y R x m y m , then it can be verified that the MMSE estimate 

 
1ˆ [ | ] ( )x xy yy yE −= = +x x y m R R y -m  (1.4) 

 
1ˆ ˆand the corresponding MMSE matrix [ ]H xx xy yy yxE −= −(x - x)(x - x) R R R R  (1.5) 

        Use this to derive the corresponding expressions when x and y are scalars (r.v.s), with [( )( )]x yE x m y mρ = − − . 

 

5. Let X and Y be jointly Gaussian, zero-mean r.v.s  and let 
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        Then, determine What relation do they have with( | ), 1,2,&3.  ( | )?iE X Z i E X Y=  

6. Let x, y1 and y2 be independent, Gaussian, zero-mean, unit-variance, r.v.s  and let 
2 2

1 2r y y= + . Determine the 

following: 1(a)  [ | ],  (b) [ | ]E x r E y r . 

 

Linear Algebra -- Basics 

7. If for a   matrix ,  then prove that ,   is realH M HM M× ∀ ∈A = A x x Ax£ . 
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8. If AH  
= -A, then show that: 

a.  is Hermitian, where 1j j = −A  

b. A is unitarily diagonisable, with purely imaginary eigenvalues 
 

9. In the below examples, find the unitary matrix Q that diagonalises A, i.e., QAQ
H
=ΛΛΛΛ 
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10. If a matrix A has eigen-values 1 1 2 20  for [1 2]  and 1  for [2 1]T Tλ λ= = = = −q q , find the following: 

(a) trace(A)  (b) det(A)  (c) Can you specify A? 
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12. Consider a recursion where (0) [2 0 2]T=x is the initial state, and 
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x Ax A  (1.7) 

        (a) Find the eigen-values of eigen-vectors of A. 

        (b) Find the limiting value ( ),  i.e., lim ( )
k

k
→∞

∞x x . 

 

13. From S. Kaykin “Adaptive Filter Theory” 4
th
 Ed., chapter-1, pp. 89-93, Pbms.# 1, 2, 3, 4, 6*, and the following problems 

from chapter-2, pp.128-135, Pbms.# 1, 2, 5, 6, 7, 9, 11, 13, 14, 15*,16, and 19*.   
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