Tutorial 1

Aug. 2007

Estimation Theory - Bias, CRLB, & Conditional Mean

1. Random variable X ~ $\mathcal{N}(\mu, \sigma^2)$ is measured using samples $\{x_1, x_2, ..., x_N\}$. Consider the following estimator for μ :

$$\hat{\mu}(N) = \frac{1}{N+a} \sum_{i=1}^{N} x_i$$

where $a \ge 0$. For what value of a is $\hat{\mu}(N)$ an unbiased estimator of μ ?

2. Suppose $\{z_1, z_2, ..., z_N\}$ are samples from a Gaussian distribution with unknown mean μ , and unknown variance σ^2 . We consider the following sample mean and sample variance estimators (assuming ergodicity), namely:

$$\overline{z} = \frac{1}{N} \sum_{i=1}^{N} z_i \tag{1.1}$$

and

KG/IITM

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{i=1}^{N} (z_{i} - \overline{z})^{2}$$
(1.2)

Is $\hat{\sigma}^2$ an unbiased estimator of σ^2 ? (Hint: Show that $E[\hat{\sigma}^2] = (N-1)\sigma^2 / N$.)

3. Suppose that N independent observations $\{x_1, x_2, ..., x_N\}$ are made of an r.v. x that is Gaussian with pdf

$$f_X(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp(-\frac{(x_i - \mu)^2}{2\sigma^2})$$

<u>Case1:</u> Only μ is unknown. Derive the Cramer-Rao Lower Bound (CRLB) of $E[\mu^2(N)]$ for $\mu = \mu - \hat{\mu}$ for an unbiased estimate of μ .

<u>Case2</u>: Only σ is unknown. Find CRLB for $E[(\partial^2 (N))^2]$ for $\partial = \sigma - \hat{\sigma}$.

<u>Case3:</u> Both μ and σ are unknown. Here, compute the inverse of the Fischer Information Matrix, i.e.,

$$\mathbf{J}^{-1}(\mathbf{\theta}), \text{ where } \mathbf{\theta} = [\mu \quad \sigma^2]$$
(1.3)

4. If \mathbf{x}_{Mx1} and \mathbf{y}_{Nx1} are individually Gaussian, and are also jointly Gaussian random vectors with $\mathbf{m}_x = E[\mathbf{x}], \mathbf{m}_y = E[\mathbf{y}], \text{ and } \mathbf{R}_{xy} = E[(\mathbf{x} - \mathbf{m}_x)(\mathbf{y} - \mathbf{m}_y)^H]$, then it can be verified that the MMSE estimate

$$\hat{\mathbf{x}} = E[\mathbf{x} \mid \mathbf{y}] = \mathbf{m}_{x} + \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1} (\mathbf{y} - \mathbf{m}_{y})$$
(1.4)

and the corresponding MMSE matrix
$$E[(\mathbf{x} - \hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})^H] = \mathbf{R}_{xx} - \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1} \mathbf{R}_{yx}$$
 (1.5)

Use this to derive the corresponding expressions when x and y are scalars (r.v.s), with $\rho = E[(x - m_x)(y - m_y)]$.

5. Let X and Y be jointly Gaussian, zero-mean r.v.s and let

$$Z_1 = aY + b; Z_2 = Y^2; Z_3 = \cos Y;$$
 (1.6)

Then, determine $E(X | Z_i)$, i = 1, 2, &3. What relation do they have with E(X | Y)?

6. Let x, y_1 and y_2 be independent, Gaussian, zero-mean, unit-variance, r.v.s and let $r = \sqrt{y_1^2 + y_2^2}$. Determine the following: (a) E[x | r], (b) $E[y_1 | r]$.

Linear Algebra -- Basics

7. If for a $M \times M$ matrix $\mathbf{A} = \mathbf{A}^{H}$, then prove that $\forall \mathbf{x} \in \mathbf{\pounds}^{M}, \mathbf{x}^{H} \mathbf{A} \mathbf{x}$ is real.

1

- 8. If $\mathbf{A}^{H} = -\mathbf{A}$, then show that:
 - a. $j\mathbf{A}$ is Hermitian, where $j = \sqrt{-1}$
 - b. A is unitarily diagonisable, with purely imaginary eigenvalues
- 9. In the below examples, find the unitary matrix \mathbf{Q} that diagonalises \mathbf{A} , i.e., $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{H}}=\mathbf{A}$

$$\begin{bmatrix} 4 & 1-j \\ 1+j & 5 \end{bmatrix}; \begin{bmatrix} 3 & -j \\ j & 3 \end{bmatrix}; \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & -1+j \\ 0 & -1-j & 0 \end{bmatrix}; \begin{bmatrix} 2 & j/\sqrt{2} & -j/\sqrt{2} \\ -j/\sqrt{2} & 2 & 0 \\ j/\sqrt{2} & 0 & 2 \end{bmatrix}$$

10. If a matrix **A** has eigen-values $\lambda_1 = 0$ for $\mathbf{q}_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $\lambda_2 = 1$ for $\mathbf{q}_2 = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$, find the following: (a) trace(**A**) (b) det(**A**) (c) Can you specify **A**?

11. If
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
, find (*i*) $\mathbf{A}^{90}(ii)e^{\mathbf{A}}$

12. Consider a recursion where $\mathbf{x}(0) = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}^T$ is the initial state, and

$$\mathbf{x}(k+1) = \mathbf{A} \,\mathbf{x}(k) \text{ where } \mathbf{A} = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/4 & 1/2 & 0 \\ 1/4 & 0 & 1/2 \end{bmatrix}$$
(1.7)

- (a) Find the eigen-values of eigen-vectors of **A**.
- (b) Find the limiting value $\mathbf{x}(\infty)$, i.e., $\lim_{k\to\infty} \mathbf{x}(k)$.
- 13. From S. Kaykin "Adaptive Filter Theory" 4th Ed., chapter-1, pp. 89-93, Pbms.# **1**, **2**, **3**, **4**, **6***, and the following problems from chapter-2, pp.128-135, Pbms.# 1, **2**, **5**, **6**, **7**, **9**, **11**, **13**, **14**, **15***,**16**, and **19***.

K. Giridhar, Dept. of Electrical Engineering, IIT Madras, Aug.2007