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A Linear-Quadratic Game Approach to Estimzition and Smoothing

Abstract
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n a LQ game satisty a saddle-point condition 8], then this ensures a bound on the
Ho, norm of the transfer function matrix. For a linear time-varying system, a cor-
responding disturbance attenuation function, used as a measure of performance
for the LQ game, is bounded from above {5}, For a short explaination on the
relation between H,, optimization, LQ games, and time-domain interpretations,
the interested reader is referred to the appendix.

This relationship between linear-quadratic differential games and H,, theory
is exploited in this paper, to formulate the. estimation and smoothing problem
in a game theoretic setting and in the time domain. The time domain enhances
comprehension and the game-theoretic approach is intuitively appealing. The only
assumption made here is that the exogenous signals are in Lg space i.e. signals
with bounded energy.

The paper is organized as follows. In section 2, starting with a disturbance
attenuation function as a measure of performance, the linear-quadratic game is
formulated. In section 3, the optimal strategies are derived, using standard vari-
ational techniques, and optimality is established. Based on the optimal strategies
obtained in section 3, the optimal estimator is constructed in section 4. In sec-
tion 5, in a straight forward way the estimation results are extended to determine
the optimal smoother. Satisfaction of the bound on the attenuation function and
the Ho, norm is shown in section 6. Finally, necessary and sufficient conditions
for optimality are given in section 7.

2. The Disturbance Attenuation Functionand a Differential Game

a. Problem definition
Consider a linear time-varying system, governed by the equation

X = Ax+ Bw

@

and with a linear measurement
y =Cx+ Dv (2)

over a finite time interval [0,T]. w(.),v(.) € L,[0,T]. w(t) € R™, v(t) € R®,
y({) € R*, x(t)e R*, Ac R***, B€ R***, C ¢ RP*™, D € RP*P. D is assumed
to be invertible, which implies that each of the P measurements is corrupted by
noise in p independent directions.

Define the measurement history as Yi=(y(s) : 0< 3< t). The estimate of the
state at time ¢, denoted by %(t), is computed based on the mesurement history up
to ¢. The smoothed estimate of the state at time s, denoted by %,(s) is computed
based on the measurements up to time ¢> s.

Define a vector z(t) € RY, which is a linear combination of the states

z=Lx 3)
where L € R?". When L = I"*", the vector z reduces to the state-vector. The
estimate (smoothed estimate) 3*(2,) of z belongs to a class of functions z which
are piecewise continuous functions of the messurement y.

‘The measure of performance is in the form of a disturbance attenuation func-
tion

T 5
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where (z —-2) € R, ((x(0) —%;),w, v) € (R", Ly, L) # 0. 2— % is the estimation
error, (x(0)—Xo) is the error in the state-estimate at the initial time ¢ = 0, %, is the
initial state-estimate which is known, w and v are the process and measurement
noise, respectively. Note that for the smoothing case, z—2 is substituted by z—3,.

T T
/ ||z—zugdt5/ (z—2)TQ(z — 2)dt
(1] 0

is the square of the weighted (weighted by Q) L; norm of the estimation error
(z — %) . Similarly, the other terms in the attenuation function are squares of
weighted L; norms. Q,W,V are time varying, symmetric matrices. Further,
Q>20,W>0,V>0and Fy'>0.
The optimal estimate 3* among all possible 2 should satisfy
sup Jos <

2 ®
Y ((x(0) — %), w,v) € (R, Lg, L) # 0 where sup stands for supremum and
8(8 > 0) is a scalar.

The above performance criterion leads to a worst case design. The matrices
Q,W,V and P! are left to the choice of the designer and depend on performance
requirements. Fy !, in o sense, reflects the uncertainty in the initial estimate.

The denominator of the attenuation function can be interpreted as a weighted
ball in (R, L3, L), i. & Banxiaxea = {{(x(0) ~ %o}, w,v); 1 x(0)~%g I:_,
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from the external signals to the estimation eror (7

[5] (see appendix). That is

B,C, D are constant matrices),
matrices. Further, assume that
w, if the disturbance attenuation
n of the transfer function matrix
led) is also bounded from above

Jog @9, x(O) < 5 > Tod oo ¥ (®)

where e = (z—%*) is the estimation error, d represents the exogenous inputs w, v,

and (v > 0) is a scalar.

b. Problem Formulation

The solution to the estimation and smoothil
converting the performance criterion(5) to a perf
game. The problem is formulated as a linear-qua
the estimate £ plays against the exogenous inputd
The performance criterion is

min

1
s L

2

ng problem can be obtained by
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subject to the constraints (1), (2) and (3). Substituting v= D! (y ~Cx),z = Lx
and & = L& the performance index (7) can be recast in the form

min max J=
% Y.WX(©) 20
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where Q = LTQL and ¥ = D~TV-1D"! and su
c.Order of Optimiz
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nce the results are dependant on
tially maximize the performance
form a min-max with respect to
he optimal values of x(0) and w

are plugged into the performance index, and then the min-max operation with

respect to & and y is performed.

The order chosen is justified as follows. Amdngst the three adversaries (y,w

and x(0)), the estimator has complete informat
Consequently, it operates directly on the measus
information of w and x(0). Hence, it should be p
and x(0). Allowing these two players, w and x(0)
their best strategies. The subsequent min-max
and y results in an estimetor which is a function

ion of only the measurement y.
tement. The estimator lacks any
repared for the worst possible w
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pperation between the players X
| of the measurements.

3. Solution to the Estimation|Game Problem

a. Maximization with x

(0) and w

Consider first, the maximization of J with re
% and y. Let

J = maz mad

w x(

The standard variational procedure {8] is formall,
is introduced to adjoin the constraint(1) to the pi
Hanmiltonian is

]

1
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spect to w and x(0), for a fixed

J

0) ©
applied. A Lagrange multiplier
erformance index. The resulting

1
=3 lx-x13

XI‘
+ T(Ax + Bw)
(10)

where % is a Lagrange multiplier. Tuaking the first variation, the first order

necessary conditions for 8 maximum are

%(0) = %o + PoA(0

L AT)=0
w=WBTA

A=-ATA-00(x~%)-CV(y —Cx)

These first order necessary conditions result in a,
lem

(§)= (crvé‘_oo'BZ‘i’) (%)

+ e O
89z - C™Vy,
with boundary conditions ‘

X(0) = %o+ PoA(D), A

(1)

two-point boundary value prob-

(2)

T)=0 13)

Since the two-point boundary value problem is linear, the solution is assumed
to be of the form

X* =%, + P\’ )

where x, and P are undetermined variables of appropriate dimension. x* and
A* represent optimal values of x and A, respectively, for any fixed admissible
functions of % and y. The optimal values for w and x(0) are

w*=WBTX, x(0)* =% + PoA(0)* (15)
Differentiating (14) and substituting for X* and A* from (12) results in

%, — Ax, — PCTV(y — Cx,) + 8PQ(x; — %)
= [AP + PAT + BWBT — P(CTVC - 6Q)P — P3*
(16)

For equation (16) to hold true for arbitrary A*, the left hand side and right hand
are set identically to zero, resulting in

%, = Ax, + PCTV(y — Cx,) — 0PQ(x, — %); %,(0) = %o
@an

P = AP + PAT + BWBT — P(CTVC - 6Q)P; P(0)=PFy
(28)

where (18) is the well-known Riccati differential equation. Note that P(t) is
symmetric.

Claim 1 If the solution P(t) to the Riccati differential equation (18) exists V¢ €
{0,T), then P(t) > 0 V¢ € [0,T].

Proof: See Rhee and Wonham (9, 11},

Claim 1 is used extensively in the proofs to follow. In section 7, the existence
of P(t) Vt € [0,T] is shown to be both a necessary and sufficient condition for
optimality.

b.Min-Max w.r.t. X and y

The optimal strategies
w*=WBTX, x(0)" =%+ FA(0)*

from (15) are substituted into the performance index, and adding the identically
zero term

2 1 . 2
2 12O I, =55 13 (D) Ioen

1

T
+g5 ), 41010 Phog =0

results in the min-max problem

min mazJ = %/OT(II % —% I3 —% I (v - Cx,) 15t
Xy (19)
subject to the dynamic constraints
%, = Ax, + PCTV(y — Cx;) — 0PQ(x, — X}i %,(0) = %o
(20)
P = AP+ PAT + BWBT - P(C"VC - 0Q)P; P(0) = Py
(21)

By executing a change of variables, the min-max problem is recast into one with
a more insightful structure. The change of variables

r=x,- %,
q=y-Cx, (22)
gives
. ST PR B
min mazJ =5 | (Irl5 -3 laly)d
2 /o [
r q (23)
subject to
%y = Ax, + PCTVq— 8PQr; %,(0) =%, 29

P = AP+ PAT + BWBT —P(C*VC - 8Q)P; P(0)=PFy
(25)

The new form (23) has a separable performance index [8]. The two indepen-
dent players, T and q, affect the variable x,,. However, x, does not appear in the
performance index. Therefore, the optimal strategiesof r'and q are readily seen
to be

.(26)
From (22) and (26) N i ‘
2 =x5 ¥ =Cx ' 27
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The value of the game is the-value of the cost. function, when all the players
use their optimal strategies. When the optimal strategies X*,y*, w*,x(0)* given
by

% =% ¥ =Cx,
w*=WEBTM, [x(0)* =%q + PoA(0)*

x* =%, + PA* (28)
are substituted into the cost function,
J(& Y W x(0)) =0 (29)

giving a zero value game.
¢. The Saddle-point inequality

The strategies ®*,y*, w*, x(0)* have been assumed to be optimal so far, based
on satisfying the necessary conditions for optimality. If the strategies satisfy a
saddle-point inequality, they represent aptimal strategies. Satisfying a saddle-
point also proves that the strategies are gptimal irrespective of the order of opti-
mization [8).
Claim 2 If P(t) exists V¢ € [0, T, the optimal strategies %°*, y*, w*,x(0)* satisfy
a saddle-point inequality,

JE& .y, w, x(0)<JR, Y%, W, x(0)")
(& y*,w*,x(0)")

IA

(30)

where %*,y*, w*,x(0)* denote optimal strategies and %,y, w,x(0) denote any
admissible strategies.
Proof: From (29),

JE,y*,wtx(0)") =0
Cousider the right inequality
JE&,yt W x(0))2J(%, ¥, w*,x(0)")

where
1

T8,y x(0)) =~ 35 1 X(0)" - %o I

T
L . g Lo o . .
+§f lx* =% 1F — 50w -+ y* = Cx" |} )at
(]
(31)

By adding the identically zero term

1 o
25 1K) = %0 2ei= 22 X" = R(T) s

41
26 J,

Td
UM -x() 51 (y)dt

where x(t)* and A*(t) represent the optimal trajectories of x(t) and A(t), to (31),
the expression reduces to

’ T
1 . =
Iy v X0 = 35 [ @l -2+
[}

P i — 1l ‘(X‘ = %)~ PA* [3)dt (32)

Since || x* —% "20 + || PA* "3) > || (x*—%) - PA* "27’ the integrand is always > 0
and therefore

JG&,y", W x(0)")20 (33)

which proves the right inequality.
Adopting a similar procedure as above, it is easily shown that
1

JE, 3%, x(0) =~ | X(T) = £ (T) oy

T
—o [ AWBTPx - %) = w s
% J,

+lly—C&* ||})dt
(39)

By assumption P(t) exists V¢ € [0,T). |Further, from claim 1, P~}(t) exists
vt € {0,T) and P~}(T") > 0. Therefore

which proves the left inequality. From (29), (33) and (35), the claim is proved.
QED.
d. Extension to a Time-invariant System

In a straight forward way, the results of the previous sections can be extended
toa linear time-invariant system on an infinite horizon. The following assumptions
are made
1. A, B,C, D are constant matrices and 7] — oo
2. (A, B) is contrallable and (C, A) is detéctable
3. Q,W and V are identity matrices

Assumption 1 characterizes a time-invariant system. Assumption 2 is essential
to obtain a stable filter and establish optimality. Assumption 3 helps establish
the H,, norm bound without complications.

The optimal steady state strategies are

=% ¥ =Cx,
wt=WBTA*,  x(0)* = %ot PpA(0)* ,
* =X+ P L TR (36)

where P, is the steady state solution o the Riccati differential equation (18)
for a given initial condition. Py.- It can be.readily seen from Claim 1 that the
steady solution, if it exists, is positive definite. If Py does not coincide with any
of the pesitive definite solutions to the algebraic Riccati equation [11], it appears
that the solution to the Riccati differential equation, if it converges, converges to
the smallest solution to the algebraic Riccati equation. Furthermore, if P, is less
than the minimal positive definite solution, then the existence of a steady state
solution is guaranteed [11). Py, in a sense, reflects the strength of the adversary
x(0). As P, increases, the adversary x(0) has a greater advantage. There may
exist a critical value for Py above which the saddie point solution for the infinite
time game will not exist.
Setting P = 0 (steady state), (18) reduces to an algebraic equation

AP+ PAT 4+ BBT - P(CTDTD'C-9LTL)P =0 37
Assuming P,, = P is a positive definite solution to (37), equality (32) reduces to
J(&,y*, W, x(0)") =
1 f® . _ < . .
e AL Y LR BT
[}

=Pt (et

and equality (34) reduces to
o 1 o
JE ¥, %, %(0)) = ~ = || x(00) — %' (00) {3 s

g [ OBTER=R) w4 1y =R Byorpe
o)
and the saddle-point inequality
I3, XO)S IR 9", x0))
Iy, w x0))

still holds.
Note that P,, > 0 is a sufficient condition for the saddle-point inequality to
hold.
4. The Optimal Estimator

a. Time-varying System

The optimal estimate %*, from (24) and (27), is governed by

% =A% + PCTV(y - Cx'); () =% (39)
with

P = AP+ PAT + BWBT - P(CTVC - 8Q)P
PO) =P, (40)
The optimal estimator (39) is seen to be both linear as well as unbiased. Its
structure is similar to that of a Kalman filter; the distinguishing feature, however,
is the dependence of the estimate on @, the weighting on the estimation error in
the performace measure. @ affects the dynamics of P (40); P in turn affects %°.

= LTQL and the optimal estimate of z = Lx is dependent on L.
p!
b. Time-invariant System

Now consider the time-invariant case (A4, B, C, D are constant matrices), and
let T — oo, Let W,V and @ be identity matrices. (A, B) is controllable and
(C, A) is detectable. The optimal steady state estimator is given by

£ =A%+ P,,CTDTD Yy - C&*); %*(0)=%o
(4
where P,, > 0 is a positive definite solution to the algebraic Riccati equation
AP+ PAT + BBT - P(CTD-TD™'C - LTL)P =0 42)
Once again, note that the optimal estimate is dependent on L.

Claim 3 The matrix (A — P,,CTD-TD~'C) is stable.
Proof: The algebraic Riccati equation (37) can be written as

(A~ P, C"D"TD'C)P,, + P(A- P,,CTD-TD'C)T
=-[BB” + P,,C"D"TD"'CP,, +6P,,LTLP,,}

(43)
which is a Lyapunov equation. By assumption, (4, B) is controllable. Note that
[BBT+P,,CTD-TD-'CP,, + 8P,,LTLP,,] is a symmelric, positive semi-definite
matrix. From lemma 4.1 in Wonham (9], (4,[BBT + P,,CTD-TD-'CPF,, +
6F,LTLP,|%) i controllable, Once again applying lemma 4.1
[9), (A~ P,,CTD-TD~'C,[BB" + P,,CTD-TD-'CP,, + 6P, LTLP,,]})} is con-

trollable. Let _
A=(A-P,CTDTD'C)

H ={BB + P,,CTD"TD-'CP,, + 6P,,LTLP, ]}

(43) reduces to .
AP, + P, AT = —HHT (44)
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From Chen [13], corollary 8.20, the eigenvalues of A have negative real parts,
if and only if for any given positive semi-definite matrix N = (HHT) with the
property (A, N) controllable, the matrix

AP+ PAT =N

has a unique positive definite solution for P.
Since P,, > 0, A is a stable matrix.
QED.
The dependence on L distinguishes the Hy, estimator from the H, estimator.
In H, estimation, the optimal estimator proHuces the best estimate of all the

states, independent of L. In Ho, estimation, the optimal estimator produces the
best estimate of that particular combination ¢f states whose estimate is sought.
Further more, in H, estimation the stabilizing, positive definite solution to the
algebraic Riccati equation is unique, while in He, estimation more than one stabi-
lizing, positive definite solution could exist. The minimal positive definite solution
should be used toinsure the smallest estimator bandwidth.

In the limiting case, where the parameter §—0, the optimal estimators given
by (39) and (41) reduce to a Kalman filter and a steady state Kalman filter
respectively. And, in a stochastic sense, the equation (40) reduces to the Riccati
equation governing the propogation of the covariance of the estimation error and
P,, denotes the steady state covariance matr{x for the time-invariant case. In
particular, note that as #—0, the optimal estimate is independent of the weighting
Q on the error.

The optimal strategy of the measurement noise

v* = D7l(y* ~ Cx,)

vt =D"1(Cx, - Ex) =0 (45)

The restriction that the optimal estimate bel
are functions of the measurement alone, is not!
timization procedure. The-optimal estimator

ng to a class of functions, which
explicitly introduced into the op-

is & function of the measurement

as a consequence of the order of optimization adopted. This point helps ex-

plain the optimal strategy of v. Note that
f: 53l v 2., )dt in the performance index (
that £'s strategy depends on the measurement.

the value of v is straightaway seen to be zero.
5. Finite Time Interval

affects only the quadratic term

B) . v is not cognizant of the fact

‘Therefore, to maximize the index,

Smoothing

The optimal smoother, for a finite'time intes
%,(8), 0 < 8 < T uses all the information avail
the interval [0, T]. The optimal smoother accoy
noise w and uncertainty in the initial state.

In terms of the game formulation (8), the
optimization

J
wxo 28
1
3

subject to

val, is now derived. The'smoother
able from the measurements over

ints for the worst possible process

problem reduces to a one-sided

x(0) — %g ";6-1 +

T
1
3 hx- U e+ - Ox s
[

(46)

%=Ax+Bw (47

Note that the estiiate X is replaced by the smoothed estimate %, and after the
optimization is performed, x* is replaced with x,. x* is the state trajectory when

w and x(0) play their optimal strategies. Gi

{Yr = (y(s) : 0 < s £ T}, the smoothed estiz
which corresponds to the worst process noise ar
As before (section 3), formally applying th

order necessary conditions along with %, = x
value problem

ven all the available information
nate follows that state trajectory
d initial state, i. e X, = Xyorat.
e variational procedure, the first
result in a two-point boundary

%, \_ ( A BwWpT %, )
A )T \ Ve -AT ( A
. (4®)
+ ( —CTVy
with boundary conditions
£,(0) = %o + PyM0), MT)=0 (49)

Note that the smoothed estimate is independent of the weighting Q on the

estimation error in the attenuation function.

independent of @, it is independent of L, the li

estimate is sought. This goes to prove the claim
the Hy, smoother identical to the H, smoother

Since the smoothed estimate is
hear combination of states whose
n [7]. Further, this feature makes

6. The Optimal Estimate and the A.ttenuation Function

The optimal estimate is substituted into the attenuation function and the

resulting expression examined.

a. Time-varying System

Claim 4 Given that P(f) exists V¢ € [0, T, the optimal estimate satisfies the

inequality

Jog(a,w,v,x(0)) < & (50)

¥ admissible (w. v.x(0)) # (w*, v*,x(0)*).

18
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Remark: Note that the values of the optimal strategies on the saddle
(x*, w*,v*,x(0)*) = (0,0,0, %) and therefore, ((z*~2°), (x(0)* —%q), w*, v*) = 0.
Proof: From (35)

J(&*,y,w,x(0)) <0
In terms of the original cost-function
J(&*,y,w,x(0)) < 0
and rearranging gives
= L il L
Il x(0) — %o Ilf,o_; o Nwl o+ v, d

<

Dl -

(51)

Tag (B, w,v,x(0)) < %

QED.
b. Time-invariant System

Consider the system to be time-invariant (4, B,C,D are constant matrices),
and let T — oo. Q,W and V are identity matrices. (A, B) is controllable and
(C, A) is detectable.

Claim 5 Given that P,, > 0 is a positive definite solution to the algebraic Riccati
equation (37), the optimal estimate satisfies the inequality

1
Ve

¥ w,v € L,, where || T4 ||o is the H,, norm of the transfer function matrix from
the external signals to the estimation error.

Proof: (77) can be rewritten as

| Tea Nloo<

1
= g5 1 x(0) -~ %q II:,D-,

+%/o fa—g |2 _%("w||;+uv||?)dt<°

(52)

Rearranging gives
00,
Nz—2* |2 dt
Jop = _ fo2 [ 2 17 i , <1 53)
Il x(0) — %9 Il,,o_n o Iw i+ (v3a "6
and consequently
1
1 Tes o< — (59

Ve
QED.

Remark: Since w,v € L,, all positive definite P,, satisfy (54).
7. Optimality Condition

The existence-of P(t) V¢ € {0, T} has been assumed in all the proofs so far.
In this section this is shown to be both a necessary and sufficient condition for
optimality.

Claim 6 The existence of P(t) V¢ € [0,7] is both a necessary and sufficient
condition for optimality.
Proof: For %* to be optimal,

AJ =&y, w,x(0)) - J(&*, ¥y, w*,x(0)*) <0
Vy,w € L,[0,T] and x(0) € R™.

(Sufficiency): Shown in claim 2. -
(Necessity):Assume that P(t) becomes unbounded at time ¢,, 0 < ¢, < T.
P(t) = 0o as t — t. from below. Let ¢ be a small number. The variation

M . 2
AT = lim( 22 I B e~ ) [esge,
g —t

~5g | WBTP™ (Ae') ~w [ffos + ||y ~ C%" [} )a2
0

1 /7 s 1
5] I8¢ B -GAw Bes +1y - Ox
te—t

(55)

where Ae* = x — %* represents the error in the optimal estimate. The existence
of P(t) is not assumed for the interval [t, — ¢, T’ and consequently the optimal
estimator given by (39) and (40) does not exist in this interval. In the interval
[t. — € T], X* represents the optimal strategy of %, no longer governed by the
dynamics (39).

Now consider the following strategies for y and w,

w=WBTP 'Ae*,y=C&* Vi€ [0,t,—¢
U w=0,y=0Cx Vi€t —¢T) (56)




Then

. =1 1 ‘o
AT = m(Gr | Ae(te = ) [Eosgg +5 /: . Il Aet |4 dt)

As e — 0, P~!(t. — €) tends to a singula
is governed by

6]

r matrix. For the interval, [0,¢, — ¢, Ae*

Aé* Ade* + B(WBTP-'Ae?)

(A+H

WEBTP-1)Ae* (58)

The solution to the linear dynamic equation (58) can be expressed in terms of a

state-transition matrix,

Ae'(t, —€) =2

(te — €),0)Ae*(0) (59

where ®(,.,) is the state-transition matrix of (A + BWBTP~!) and Ae*(0) =

x(0) — Ry.

Since x(0) is arbitrary, x(0) can be
in the null space of lim,_,o P71 (¢, — ¢).
Then

ool .
lim(5z [l Ae (e

1 /T
AJ = lim ~/
=02 f, _

Therefore, (61) is a contradiction that
vte 0, 7).

For the time-invariant system, existe
the algebraic Riccati equation (37) is bo
a stable filter. (see Claim 3). P,, > 0is

and

chosen such thatfim,_o Ae*(t, — €) lies
Note that the latter is a singular matrix,

—e "‘29-1(&4): 0 (60)

l A’ % dt >0 (61)
[ 3

%* is optimal. Hence, P(t) must exist

ence of a positive definite solution P,, to
h a necessary and sufficient condition for
a sufficient condition for optimality.

8.Conclusions

A robust estimator and smoother, satisfying an upper bound on a disturbance

attenuation function have been derived

a linear time- invariant system, the uj
tion function is equivalent to a bound

from a quadratic game formulation. For

per bound on the disturbance attenua-
on the Ho, norm.The optimal estimator,

obtained from a general class of nonlinéar functions of the measurements, is lin-
ear and unbiased. Both necessary and sufficient conditions for optimality are
presented. For the time-varying case, the existence of a solution to the Riccati

differential equation, over the time inter
for the existence of the optimal filter. J
of a positive definite solution to the alge
sufficient condition for the existence of

The optimal estimator is dependant
in the performance criterion, while the
weighting on the estimation error. This.4
dant on the linear combination (L) of ¢
the optimal smoother gives the best sm
dent of L. If the disturbances are whit:

val, is a necessary and sufficient condition
for the time-invariant case, the existence
braic Riccati equation is a necessary and
3 stable and optimal filter.

on the weighting on the estimation error
optimal smoother is independent of the
shows that the optimal estimate is depen-
he states whose estimate is sought, while
oothed estimate of every state indepen-
noise processes, the smoother obtained

is identical to the white-noise smoother. In the limiting case when § — 0 and
the disturbances are white noise processes, the optimal estimator reduces to a

Kalman filter.

Appendix
The following explaination is an atterapt to link the frequency domain concept

of Hy synthesis to the equivalent LQ game concept in the time domain.
Consider the causal, linear time-invariant system,

X = A%+ Bw (62)

with a linear measurement

y=Cx+ Dv (63)
where x(t) € R®, w(t) € R™, v(t) € R* . w(),v(.) € L2[0,00). A € R™*",

Be R™® C e R, De RP**. (A,B

is stabilizable and (C, A) is detectable.

D is assumed to be invertible. The optim4l estimate of the vector z = Lx is sought,

where z(t) € R? and L € R™*", Let d

= [wT,v7|7 represent the disturbances,

@ = 7 — 3 the estimation error. If F is the transfer function matrix from the
disturbances d to the estimate error e, then

==

where 8,d are in the Laplace domain.

Fd (64)

The energy of the external signals, being in L3[0, 0), is bounded. The energy
of the signal e evaluated in the time domain

el / " eejart (65)

and in the frequency domain

Vet attiscand (66)

where « denotes the complex-conjugate transpose, and

I ellz=

€ fla< oo (67)

2822

A fundamental fact'is that the L;{0, o0) gaih of a causal, lineat time-invariant
system equals the H,, norm of its transfer functign, ie

1 F lle = suplll Fd [l d Il= 1)
d
=supf|| @ fla:lt @ fz=1]
d
= sup]| e [l:f} d o= 1]
d , (68)
Therefore,
min | F [lo=min sup(] e [l2:]] d [l= 1}
Z z d (69)
Note that (69) links the frequency domain to the time domain and helps
extend the interpretation of Hy, norm minimization to causal, linear time-varying
systems.
For a causal,linear time-varying system the optimization problem is set up as
min J= min sup [ el,
z 3 d (70)
subject to
Ivilz+ il wlag1 (71)
Since £°, the optimal estimate, should anticipate the worst w,v, the L,[0,00)
constraint is incorporated into the performance measure with the aid of a scalar
Lagrange multiplier % and the problem is recast into a min-max form,
. 1
min maz J = | ellz ~5(vlia + [ w l3)
3 (w,v) (72)

As shown in this paper, a saddle-point solution to the above problem, ensures
that

J{e*,v,w) < J(e’, v, w*) < J(e,v*, W*) (73)

and the left hand side inequality ensures that

1
lFella< ] (79
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