EE-5040: Adaptive Signal Processing

August 2011 Tutorial #1 KG / IITM

- 1. Show that (a) if **A** is invertible, so is **A**^H (b) if **A** is unitary, so is **A**^H
- 2. If $\mathbf{A} = \mathbf{A}^{H}$, then for every $\mathbf{x} \in \mathbf{C}^{M}$, $\mathbf{x}^{H}\mathbf{A}\mathbf{x}$ is real. Prove. (\mathbf{A} is a M x M matrix.)
- 3. If $A^H = -A$, (a) show that jA is Hermitian (j= $\sqrt{-1}$) (b) show that A is unitary, diagonalizable and has pure imaginary eigenvalues.
- 4. Find k, l, and m to make the matrix \mathbf{A} shown below, a Hermitian matrix

$$A = \begin{bmatrix} -1 & k & -j \\ 3 - j5 & 0 & m \\ l & 2 + j4 & 2 \end{bmatrix}$$

5. In the below, find the unitary matrix **Q** that diagonalizes **A**, i.e., $\mathbf{Q}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}$.

a)
$$A = \begin{bmatrix} 4 & 1-j \\ 1+j & 5 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 4 & 1-j \\ 1+j & 5 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & -1+j \\ 0 & -1-j & 0 \end{bmatrix}$$

d)
$$A = \begin{bmatrix} 2 & j/\sqrt{2} & -j/\sqrt{2} \\ -j/\sqrt{2} & 2 & 0 \\ j/\sqrt{2} & 0 & 2 \end{bmatrix}$$

6. If **A** has $\lambda_1 = 0$, and $\lambda_2 = 5$ corresponding to

$$q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad q_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Find a) trace(A), b) det(A), c) can you specify A?

7. Find a real matrix **A** with $\mathbf{A} + \alpha \mathbf{I}$ invertible for all real α .

8. Find (i)
$$\mathbf{A}^{90}$$
, (ii) $\mathbf{e}^{\mathbf{A}}$, if

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

9. Find a 3 x 3 matrix whose rows add up to 1 and show that $\lambda = 1$ is an eigenvalue of this matrix. What is the corresponding \mathbf{q} ?

10. Verify if the matrices are unitary; if so, specify their inverses.

a)
$$A = \begin{bmatrix} -j/ & j/ & j/ \\ \sqrt{2} & \sqrt{6} & \sqrt{3} \\ 0 & -j/ & j/ \\ 0 & \sqrt{6} & \sqrt{3} \\ j/ & j/ & j/ \\ \sqrt{2} & \sqrt{6} & \sqrt{3} \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 3/ & j4/ \\ 5/ & 5/ \\ -4/ & j3/ \\ 5/ & 5/ \end{bmatrix}$$

c)
$$A = \frac{1}{4} \begin{bmatrix} j + \sqrt{3} & 1 - j\sqrt{3} \\ 1 + j\sqrt{3} & j - \sqrt{3} \end{bmatrix}$$

d)
$$A = \begin{bmatrix} \frac{1+j}{2} & \frac{-1}{2} & \frac{1}{2} \\ \frac{j}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-j}{\sqrt{3}} \\ \frac{3+j}{2\sqrt{15}} & \frac{4+3j}{2\sqrt{15}} & \frac{5j}{2\sqrt{15}} \end{bmatrix}$$

11. Consider a recursion where $\mathbf{x}(0) = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}^T$ and $\mathbf{x}(k+1) = \mathbf{A} \cdot \mathbf{x}(k)$

$$A = \begin{bmatrix} 1/ & 1/ & 1/\\ 1/2 & 1/2 & 1/\\ 1/4 & 1/2 & 0\\ 1/4 & 0 & 1/\\ 1/4 & 0 & 1/2 \end{bmatrix}$$

Find the (i) eigenvalues and the eigenvectors of the matrix \mathbf{A} , (ii) the value of $\mathbf{x}(k+1)$, (iii) the limiting value $\mathbf{x}(\infty)$.

- 12. A WSS process has $\mathbf{R}_{xx}(0) = 1$, and $\mathbf{R}_{xx}(\pm 1) = 0.8$.
 - a) Choose $\mathbf{R}_{xx}(\pm 2) \ge 0$, such that the process is deterministic like.
 - b) For your choice of $\mathbf{R}_{xx}(\pm 2)$, obtain an expression for $\mathbf{R}_{xx}(\mathbf{k})$ for all \mathbf{k} .
- 13. State whether the following statements are True. If False, provide the correct statement.
 - a) an AR process is always asymptotically WSS.
- b) an estimator which is ergodic in the mean square error sense need not necessarily be ergodic in the mean.
- c) generally speaking, more the more the (extent of) correlation, large will be the eigenvalue spread of the random process.
 - d) an unitary matrix is diagonalizable only if it has distinct eigenvalues.
- 14. Consider a r.p. $u(n) = 3e^{j4\pi n} + v(n)$, where v(n) is a Gaussian white noise process with variance $\sigma^2 = 4$.
 - a) find the 2 x 2 autocorrelation matrix **R**.
 - b) what is the eigenvalue spread of **R**?
 - c) find the expression for \mathbf{R}^6 .
- 15. We are given random samples $\{x_1, x_2, ..., x_N\}$ where each x_i is i.i.d. with $N(\mu, \sigma^2)$. Consider the following estimator for μ ,

$$\hat{\mu}(N) = \frac{1}{N+a} \sum_{i=1}^{N} x_i$$

where $a \ge 0$.

- (a) For what value(s) of a is the above unbiased estimator of μ ? (for small sample case)
- (b) For what value(s) of a is the above an <u>asymptotically</u> unbiased estimator of μ ?
- (c) Prove that the above is a consistent estimator of μ , for all $a \ge 0$.
- 16. Suppose that N independent observations $\{x_1, x_2, ..., x_N\}$ are made of a r.v. X that is Gaussian; i.e.,

$$p(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp[-(x_i - \mu)^2 / 2\sigma^2]$$

Assuming only μ is unknown, derive the Cramer-Rao lower bound (CRLB) of $E[(\mu - \hat{\mu})^2]$ for an unbiased estimator of μ .

- 17. For the observations in Pbm.16, now assume that only variance σ^2 is unknown, and derive the CRLB of $E[(\sigma^2 \hat{\sigma}^2)^2]$ for an unbiased estimator of σ^2 .
- 18. Consider a real 7x1 random vector $\mathbf{u}(n)$ having an auto-correlation \mathbf{R} with $\lambda_1 > \lambda_2 > \dots \lambda_7$ and corresponding eigen-vectors \mathbf{q}_i , i=1,2,...7. A low-rank model of $\mathbf{u}(n)$, given by $\mathbf{c}(n)$, is constructed using only the eigen-vectors corresponding to the <u>3 largest</u> eigen-values of R, and this $\mathbf{c}(n)$ is transmitted through an AWGN channel.
- (a) Describe in matrix-vector notation the operation at the transmitter to obtain $\mathbf{c}(n)$.
- (b) The received vector $\mathbf{r}(\mathbf{n}) = \mathbf{c}(\mathbf{n}) + \mathbf{w}(\mathbf{n})$, where $\mathbf{w}(\mathbf{n})$ is AWGN with variance σ_w^2 . What is the matrix operation required at the receiver to obtain MMSE estimate $\tilde{\mathbf{u}}(\mathbf{n})$ of $\mathbf{u}(\mathbf{n})$?
- (c) If $\lambda_i = 0.9^i$, i = 1, 2, ..., 7, find the limiting value of σ_w^2 at which the above low-rank model gives the same MSE as the direct transmission of the entire $\mathbf{u}(\mathbf{n})$.