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(d.1) CMA1-2 from Prob. 5.25, where 7 is now chosen as v = |s|*/E|s| in terms of the
second moment of the symbol constellation divided by the mean of magnitude of the
symbols.  For 16-QAM data we find v = 3.3385 (verify this value). Use p = 0.0001]
and increase the SNR level at the input of the equalizer to 60 dB. Simulate for 30000
iterations and plot the scatter diagram of the output of the equalizer after ignoring the
first 15000 samples.

(d.2) The reduced constellation algorithm (RCA) of Prob. 5.23, where v is now chosen as
v = E|s|?/E|s], in terms of the second moment of the symbol constellation divided
by the mean of the I;-norm of the symbels (remember that the [; norm of a complex
number amounts to adding the absolute values of its real and imaginary parts, as in
Prob. 4.13). For 16-QAM data we find v = 2.5 (verify this value). Use the same step-size
and same simulation duration as part (d.1).

(d.3) The “stop-and-go” algorithm is a blind adaptation scheme that employs the decision-
directed error,

eq(i) = 81 — A) — z(2)
It also employs a flag to indicate how reliable eq4(i) is. The flag is set by comparing
eq(i) to another error signal, say the one used by the RCA recursion,

“[E|s

es(i) = vyesgn(z(i)) — z(z), y=E|s

If the complex signs of {eq(i). es(i)} differ, then e4(7) is assumed unreliable and the flag
is set to zero (see Picehi and Prati (1987)). More explicitly, the stop-and-go recursion
takes the form:

z{1) = u;wy -y

eaf(i) = (i — A) — z{i) (decision-directed error)

e.(i) = yesgn(z(i)) — (i) (RCA error)

1 if csgn(eq(i)) = csgn(ex(i))
fli) = (a flag)
] if esgn(eq(i)) # csgnles<(i))

e(i) = f(i)eali)

w, = w1 + pue(i)

\

Use the same step-size and simulation duration as in part (d.1).

The programs that solve this problem are the following.

partA.m This program solves part (a) and generates two plots. Figure 5.28 shows the impulse
responses of the channel, the equalizer, and the combination channel-equalizer. Observe that
the latter has a peak at sample 19 so that the delay introduced by the channel and equalizer
is 19. Figure 5.29 shows a typical plot of the scatter diagrams at transmission, reception.
and output of the equalizer.

partB.m This program solves part (b) and generates three plots. Figure 5.30 shows the impulse
responses of the channel, the equalizer, and the combination channel-equalizer. Figure 5.31
shows a typical plot of the scatter diagrams at transmission, reception, and output of the
equalizer. Observe that although symbols from 16—QAM do not have constant modulus,
CMAZ2-2 still funetions properly: albeit more slowly. Figure 5.32 shows the real and imaginary
parts of 50 transmitted symbols and the corresponding 50 decisions by the slicer (with the
delay of 19 samples accounted for in order to synchronize the signals). These 50 symbols are
chosen from the later part of the data after the equalizer has converged.

partC.m This program solves part (¢) and generates three plots as in part (b). Here we only
show in Fig. 5.33 the resulting scatter diagrams for MMA. Observe how the scatter diagram
at the output of the equalizer is more focused when compared with CMA2-2.

partD.m This program solves part (d) and generates scatter diagrams for three additional
blind adaptive algorithms. Typical outputs are shown in Fig. 5.34.
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algorithm is examined in Computer Project 5.3. In Yang, Werner, and Dumont (1997), a multi-
modulus algorithm (MMA) was introduced that is suitable for two-dimensional modulation schemes
(see Prob. 5.24); this algorithm was studied in the context of broadband access systems in Werner
et al. (1999).

The article by Johnson (1998) provides a survey of the developments in the area of blind
algorithms until the late 1990s, including applications to fractionally-spaced equalization (see also
Mai and Sayed (2000)). Constant modulus algorithms have also been used for adaptive beamforming
(e.g., Keerthi, Mathur, and Shynk (1998)) and for interference cancellation (e.g., Kwon, Un, and
Lee (1992)).

Variable step-size LMS. As we are going to see in Chapters 6 and 9, the step-size in LMS adapta-
tion controls the rate of convergence and the steady-state performance of the filter. In order to meet
the conflicting requirements of fast convergence and good steady-state performance, the step-size
needs to be controlled. Various schemes for controlling the step-size of LMS have been proposed
in the literature, for instance, by Kwong and Johnston (1992), Mathews and Xie (1993), Aboul-
nasr and Mayyas (1997), Pazaitis and Constantinides (1999), and Shin, Sayed, and Song (2003a).
Kwong and Johnston (1992) use squared instantaneous errors, while Aboulnasr and Mayyas (1997)
use the squared autocorrelation of errors at adjacent times, Pazaitis and Constantinides (1999)
adopt the fourth-order cumulant of the instantaneous error, and Shin, Sayed, and Song (2003a) at-
tempt. to maximize the decrease in the weight-error-vector energy. The step-sizes in these variants
are evaluated in the manner shown in Table 5.14 (for the case of real data):

Table 5.14. Three variable-step-size LMS implementations.

VSS-LMS (i) = ap(i — 1) + ye*(i)
Kwong and Johnston (1992)

RVS-LMS | uli) = apli — 1) + 4p°(1)
Aboulnasr and Mayyas (1997) p(i) = Bp(i — 1) + (1 — B)e(i)e(i — 1)

KVS-LMS p(6) = prmax (1 = e72CD)
Pazaitis and Constantinides (1999) | Ci(1) = f(i) = ZSp"’{i)

f(i) =B8fGE—1)+ (1 - BRe'(d)
p(i) = Bp(i — 1) + (1 — B)e* (1) ]
VSS-NLMS (i) = —pmax__ . _lPll”_
Y= S wl? e+ pidl
Shin, Sayved, and Song (2003a) c =~ 1/SNR
g :
e AP = Byt
P i1 4+ i)f 7 Hu.:‘[-’r(” 34

Adaptive equalization. In the concluding remarks of Chapter 3, we commented on the early his-
tory of channel equalization and how the mean-square error criterion was proposed for this purpose
by Widrow (1966). Gersho (1969), and Proakis and Miller ( 1969). In this chapter, we described how
channel equalizers could be designed adaptively, as opposed to the closed-form solution methods of
Sees. 2.7.3 and 3.3. Historically, the LMS algorithm was developed at the right time, in the early
1960s, right when interest in equalization was starting to build up (Lucky (1965)). Soon afterwards,
the use of adaptive filters for equalization purposes was studied in greater detail by Gersho (1969),
Proakis and Miller (1969), Ungerboeck (1972), and Salz (1973). In these adaptive implementa-
tions. an equalizer would have two modes of operations: a training mode (Gersho (1969)) whereby
data that are known to the receiver and the transmitter are used to train the equalizer, and a
decision-directed mode (Salz (1973)), whereby decisions are used to train the equalizer.
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