Department of Electrical Engineering

EE-5040: Adaptive Signal Processing

Mar. 2010

Simulation Assignment #1

KG/IITM

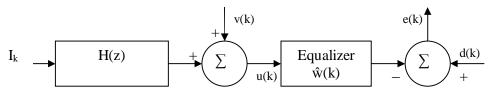
- 1. Expectation and Egodicity: For the 3 difference equations given below, estimate the MxM autocorrelation matrix \mathbf{R}_{uu} for both M=2 and M=3 as follows:
 - Calculate the statistical \mathbf{R}_{uu}
 - Assuming ergodicity, numerically estimate \mathbf{R}_{uu} . Consider time averages obtained (ii) using 10, 100 and 1000 sample-functions (Monte-Carlo trials). Hint: for AR process, to get WSS, drop the first 500-1000 data samples.

Here, v(n) is AWGN with variance as specified below.

- (a) $u(n) = \cos(2\pi n/50) + v(n)$; $\sigma_{\rm v}^2 = 0.1$
- (b) u(n) = 0.8 v(n) 0.2 v(n-1);
- $\sigma_{v}^{2}=1$ $\sigma_{v}^{2}=0.5$ (c) u(n) = 0.9 u(n-1) + v(n);

Bonus question: Set up the Yule-Walker equations (read up from Haykin) for the 3 cases, and verify that $\mathbf{w} = \mathbf{R}_{uu}^{-1} \mathbf{r}$ makes sense

2. Wiener & Least Squares filtering: In the figure below, the input $\{I_k\}$ is i.i.d. with $E[{I_k}^2]=1$, following a uniform pdf (i.e., $P(I_k=+1)=1/2=P(I_k=-1)$), and the noise v(k) is AWGN with variance $\sigma_{\rm v}^{2}$



The bipolar symbols $\{I_k\}$ suffer inter-symbol interference (ISI) from the channel $H(z)=1-z^{-1}+$ 0.5 z^{-2} , and this ISI is compensated by a Mth order equalizer, $\hat{\mathbf{w}}$ (or $\hat{\mathbf{w}}(k)$), defined using the LMSE criterion (Wiener filter), or, using a Least Squares criterion. The desired signal is given by d(k), where $d(k)=I_k-\Delta$, with $\Delta \ge 0$ being an integer.

- (a) Write a program to calculate the Wiener-Hopf solution $\hat{\mathbf{w}}=\mathbf{R}^{-1}\mathbf{p}$ which should work for any M and Δ . (Assume H(z) and σ_v^2 are known). For the given H(z), the program should be able to calculate $\hat{\mathbf{w}}$ and J_{min} for any σ_v^2 , M & Δ .
- (b) To study the effect of window length on the "quality" of R, simulate random data $\{I_k\}$ and $\{v(k)\}, k=1...N$, and find the LS estimate $\hat{\mathbf{w}}_{LS}(n)$ when $\Delta=0$, $\sigma_v^2=0.05$, M=7, and calculate the least sum of error squares J_{min}^{LS} for the following values of N: (i) N=10, (ii)N=100, (iii)N=200, and (iv)N=2000.
- (c) With N=1000, for each of the below situations, find J_{min} and $J_{min}^{\ LS}$ and tabulate them. Comment on your results.

M	Δ	$\sigma_{\rm v}^{\ 2}$	\mathbf{J}_{\min}	${f J_{min}}^{LS}$
3	1	0.01		
10	1	0.01		
15	1	0.01		
10	2	0.01		
10	4	0.01		
10	8	0.01		
10	3	0.01		
10	3	0.05		
10	3	0.10		

Hint: For J_{min} ls get $\hat{\mathbf{w}}_{LS}$ and substitute this in σ_d^2 - $\mathbf{p}^T\hat{\mathbf{w}}_{LS}$