Department of Electrical Engineering, Indian Institute of Technology, Madras

EE 4140: Digital Communications

Se	pteml	ber (201	6
~ •	P			~

Tutorial 2 (Rev 2.0)

KG/IITM

1. Find the compact ortho-normal basis set, and using it, make a clear labeled plot of the signal constellation for the signal set shown in Fig-1.

2. The signal g(t) is sent through a channel with impulse response h(t), where the two functions are shown in Fig-2. Make a labeled plot of the ideal matched filter's impulse response. Hint: Assume single-shot communication.

3. Find the autocorrelation function S(t) for the given signal g(t) in Fig3. Draw the signal S(t).

where

Fig-3

4. Find the minimum distance and multiplicity for given signals in Fig-4.

5. Find out the compact basis function for signals given in Fig-5.

- 6. Consider a band-pass signal $s(t) = I(k)g(t)Cos(2\pi f_c t)$ for $kT \le t \le (k+1)T$ where the pulse shape $g(t)=\operatorname{sqrt}(2/T)$ for $0\le t\le T$. Here, message symbol $I(k) \in \{+3d, +d, -d, -3d\}$, and the received sample at the output of the matched filter can be written as $z(k) = \alpha I(k) + v(k)$ where v(k) is WGN with variance No/2, and the
 - real scalar α accounts for any possible gain(scaling) error encountered in the AGC-ADC operations.
 - (a) If the average energy E_a for this signal set is 4 Joules, what is *d*? *Hint:* Also, relate this E_a to the distance 2d between the neighbouring points in the constellation in order to answer part-(c).
 - (b) For $\alpha = 1$, find the exact expression for the average probability of symbol error P_e in the above AWGN channel. Express your answer in terms of $q(d) = Q\left(\frac{d}{\sqrt{N_0/2}}\right)$ with 2*d* as in part (a).
 - (c) Now, if α =1.5 and this knowledge is not known at the receiver, find the new expression for P_e when the same decoder (decision regions) as in part (b) is used.

7. Derive the average probability of symbol error P(e) for the square 64-QAM constellation shown below in terms of q(d).

(a) Assume instead that the union bound is used only on the "nearest neighbor" symbols to compute the bound on $P_{UB}(e)$. What is this expression?

(b) How does this compare with the true P(e)? Numerically evaluate both of them for Eb/No = 10dB.

- 8. Consider a band-pass signal $s(t)=I_1(k)g(t)Cos(2\pi f_c t)+I_2(k)g(t)Sin(2\pi f_c t)$, for $kT \le t \le (k+1)T$, where the pulse shape g(t)=sqrt(2/T) for $0\le t\le T$. If $I_1(k) \in \{+1,-1\}$, while $I_2(k) \in \{+3,+1,-1,-3\}$, determine the following:
 - (d) What is the ortho-normal basis set and plot the corresponding signal constellation.
 - (e) What is the average energy E_a for this signal set? *Hint:* Also, relate this E_a to the distance 2d between the neighbouring points in the constellation in order to answer part-(c).
 - (f) Find the exact expression for the probability of symbol error in an AWGN channel with PSD No/2. Express your answer in terms of q where q(d)=Q(d/sqrt(No/2)) with 2d as in part (b).
 - (g) Perform Gray coding for the constellation. Using this, provide the expression for the <u>bit</u> error probability (i.e., bit error rate) for the above measurement model.

9. Do the following problems from the 7th chapter in the text-book (Proakis and Salehi), starting with page. 453 in the E-version. The problems marked with "*" are a little bit harder, since they were not discussed in the class (as yet).

- → All problems from <u>7.1 to 7.35</u> excepting 7.17. The possibly hard-ones are 7.8*, 7.23*, 7.28*, 7.31*, 7.32*, and 7.35*
- \rightarrow All problems from <u>7.42 to 7.46</u>.