Dept. of Electrical Engineering, IIT Madras

EE 4140: Digital Communication Systems

Aug. 2024

Tutorial #1

KG / IITM

1. A low-pass signal of one-sided bandwidth of W=1.25MHz is sent as a DSB-SC signal. If the receiver uses an IF sampling scheme, with center frequency $f_{IF} = 71$ MHz, determine the <u>least</u> sampling rate f_S required.

2. For the QCM signal with magnitude response as below, find the least possible band-pass sampling rate f_s . Make a rough plot of the frequency response of the sampled sequence around 0Hz. *Hint*: Use both the band-edges (i.e., f_c +W and f_c -W in order decide the "lowest" sampling rate).

3. In the above problem, let us discuss two possible sources of error:

(a) Assume that the received signal has a <u>phase offset</u> of θ radians; in other words, $s(t) = m_1(t)Cos(2\pi f_c t + \theta) + m_2(t)Sin(2\pi f_c t + \theta)$. Now, what will be the time-domain representation of the sampled sequence? For the special case when $\theta = \pi/2$, what will be the samples of the received signal?

(b) Instead, assume $\theta = 0$ radians, but the incoming carrier frequency f_c ' is offset by Δf Hz wrt to the sampling rate designed assuming f_c ; i.e., $f_c' = f_c + \Delta f$ and use this f_c ' this in place of f_c in the expression for s(t) above. What is then the expression for the time-domain samples after the bandpass sampling ADC in terms of your sampling rate f_s and the Δf ? Say, for $\Delta f = 1$ MHz, will some of I-Q samples at least be undistorted? Justify your answer.

4. A QCM signal $s(t) = m_1(t)Cos(2\pi f_c t) + m_2(t)Sin(2\pi f_c t)$ has the two message signals $m_1(t)$ and $m_2(t)$ of one-sided bandwidth of W_1 =3KHz and W_2 =4KHz, respectively, and take f_c =31KHz.

(a) Find the minimum band-pass sampling rate $f_s=1/T_s$ that gives un-aliased samples of the two signals.

(b) Assuming that the spectrum of $m_1(t)$ has a "triangular" shape between -3KHz to +3KHz, make a labeled, rough sketch of the spectrum of the samples $m_1(kT_s)$ between -40KHz and +40KHz.

5. A dozen DSB-SC signals of one-sided (low-pass) bandwidth W = 4MHz (including a "guardband of 0.5MHz) are present between 800MHz and 896MHz, as shown below. Describe the operations (sampling, rate-conversion, filtering) that you need to do to recover Nyquist rate samples of the 7th DSB-SC signal (i.e., the signal present between 848Mz and 856MHz).

6. In the question above, if the dozen signals were QCM, how does your answer change?

7. A real low-pass signal s(t) of <u>one-sided</u> bandwidth W=4MHz is sent as an upper-sideband only single-side band (SSB-SC) signal with magnitude spectrum as shown below. The receiver uses bandpass sampling.

(a) Determine the least sampling rate $f_S = 1/T_S$ required in MHz. (b) Make a neat plot of the magnitude spectrum |S'(f)| of the sampled sequence $s(kT_S)$ between 24MHz and -24MHz.

8. A real bandpass QCM signal $s(t) = m_1(t)Cos(2\pi f_c t) + m_2(t)Sin(2\pi f_c t)$ with carrier frequency f_c =200KHz has the two message signals $m_1(t)$ and $m_2(t)$ of <u>one-sided</u> bandwidth of W=5KHz each. Let S(f), $M_1(f)$, and $M_2(f)$ denote the (complex) Fourier transforms of s(t), $m_1(t)$ and $m_2(t)$, respectively. Given $M_1(f=2KHz) = a + jb$ and $M_2(f=2KHz) = c + jd$ where j = sqrt(-1), determine the following in terms of *a*, *b*, *c*, and *d*. The number inside the brackets can be assumed to be in KHz. (a) $M_1(-2)$ and $M_2(-2)$ (b) S(202) and S(198)(c) S(-198)

9. Consider a different QCM signal with magnitude response as below. *Note*: From the information given below, note that both the low-pass message signals have one-sided bandwidth of 4.5MHz each.

(a) Find the least possible band-pass sampling rate f_s for this choice of f_c .

(b) If you were allowed to modify (or design) the carrier frequency between 65MHz and 70MHz given these message signals, what would you choose as f_C to minimize the band-pass sampling rate? Justify your answer.