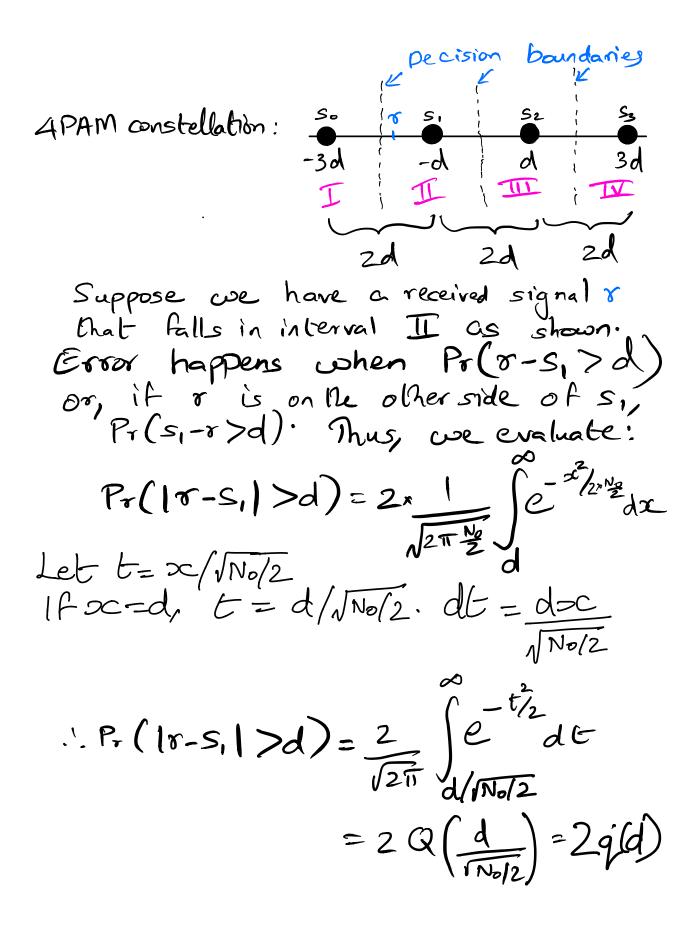
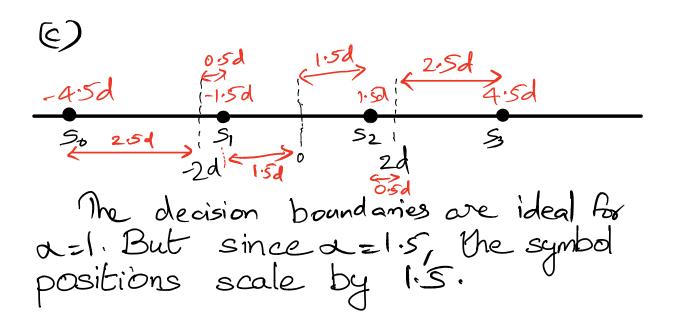
EEQ140 Digital Communication Systems Tutorial #2

 $I \cdot (a)$ Average energy, $Ea = \frac{1}{4} \ge Ei = 4 J$ where E; is the energy of the im point of the constellation. Constellation: 23d, d, -d, -3d} $E_{a} = \int_{a} \left[9d^{2} + d^{2} + d^{2} + 9d^{2} \right] = 5d^{2}$ Sd=4=> d= 14 $E_a = Sd^2 = \frac{9}{4}(2d)^2$ where 2d is De distance between neighboning points of the constellation. (b) For d = z(k) = I(k) + v(k) $\sigma_{\pm}^{2} = \frac{N_{0}}{2}$ and $\sigma_{\pm} \sqrt{\frac{N_{0}}{2}} = v(k) \sim N(0, \frac{N_{0}}{2})$

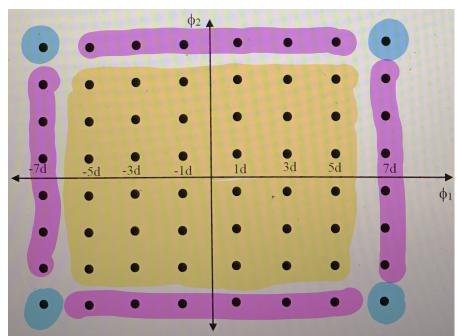


Similarly $Pr(1r-s_2) > d$ = 2 q(d). For Sol S3, error only happens in one direction, so probability of error is q(d) each. Thus average probability of error $P_{earg} = \frac{1}{4} \left(\frac{q(d) + 2q(d) + 2q(d)}{+q(d)} \right)$ $= \frac{3}{2}q(d)$



For sol S3, error occurs only h one direction, when received symbol is hurther than 2:52. But for s, and sz, error can occur in both directions, at distances 0.5dl 1.5d. $P_{c_1s_0} = P_{c_1s_3} = 1 - q(2.5d) \Rightarrow P_{c_0} = P_{c_1} = q(2.5d)$ $P_{e_1} = P_{e_2} = q(1.5d) + q(0.5d)$ $P_{e,ang} = \frac{1}{4} \left[2q(2:Sd) + 2q(1:Sd) + 2q(0:Sd) \right]$ $= \frac{1}{2} \left[q(2:3d) + q(1:5d) + q(0:5d) \right]$

 $2 \cdot P_e = 1 - P_c$



Following the logic used in the lecture for
16 RAM, we have 4 points (shaded
in blue) that have
$$P_c = (1-q)^2$$

for both inphase and quadrature components
24 points where $P_c = C_{1-q}C_{1-2q}$
and the remaining 36 points where
 $P_c = (1-2q)^2$.
Thus, $P_{c-aq} = 1 - P_{c,aq}$
 $= 1 - \frac{1}{16} \left[4(1-q)^2 + 24(iq)(1-2q)^2 + 36((1-2q)^2) + 36((1-2q)^2) + 36((1-2q)^2)^2 \right]$
 $= 1 - \frac{1}{16} \left[(1-2q)^2 + 6(1-3q+2q^2) + 9((1-2q)^2) \right]$
 $= 1 - \frac{1}{16} \left[(1-2q)^2 + 6((1-3q+2q^2)) + 9((1-4q+4q^2)) \right]$
 $= 1 - \frac{1}{16} \left[16 - 56q + 49q^2 \right]$
 $= \frac{1}{16} \left[566q - 49q^2 \right]_{f}$ (1)
(a) If we consider the nearest
neighbor based union bound, has
the blue-shaded symbols have two
nearest neighbors at distance 2d,

the pink-shaded symbols have 3 nearest
reighbors and the yellow shaded
Symbols have 4 nearest reighbors,
$$q(d)$$
 is the error corresponding
to each. Then,
 $P_{UB} = \frac{1}{64} \left[2\pi (4q) + 3\pi (2aq) + 4\pi (36q) \right]$
 $= \frac{1}{16} \left[S6q(d) \right] - (2)$
(b) Comparing (D L 2),
 $P_{earg} = P_{UB} - \frac{49}{16}q^2$
Numerical evaluation may be done
by Substituting in the q Aurchin.

$$3 \cdot s(t) = I_{1}(k)g(t)\cos 2\pi f_{e}t + I_{2}(k)g(t)\sin 2\pi f_{e}t$$

$$g(t) = \int_{-\pi}^{2\pi}$$

Assuming
$$\frac{1}{4a}$$
 is an integral multiple of T,
 $\left[\int_{T}^{T} |\sqrt{2} \cos 2\pi t_{c}t|^{2} dt\right]^{1/2} = 1$, $\left[\int_{T}^{T} |\sqrt{2} \sin 2\pi t_{c}t|^{2} dt\right]^{1/2} = 1$
Also the cos and sin terms one
orthogonal to each other. Thus,
 $a(t) = \sqrt{2} \cos 2\pi t_{c}t$ and $b(t) = \sqrt{2} \sin 2\pi t_{c}t$
form an orthonormal basis set.
Signal Constellation:
 $b(t)$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

(b)
$$E_a = \frac{1}{8} (4 (3^2 + 1^2) + 4 (1^2 + 1^2))$$

 $= \frac{1}{2} (12) = 6 g$
(c) The exact expression can be
found in a manner Similar to
the 64 QAM example.
 $P_c = \frac{1}{8} [4(1-q)^2 + 4(1-2q)(1-q)]$
 $= \frac{1}{2} [3q^2 - 5q + 2]$
 $P_{eravg} = \frac{1}{2} [5q - 3q^2]$
(d) Gray Coded Constellation:
 $\frac{b(t)}{3}$
 $\frac{00}{11} = \frac{1}{10}$
 $\frac{1}{10} = \frac{1}{10}$

We need to ensure that adjascent symbols do not differ by more than a bit.

The bit error probability is approximately $P_{b} = \frac{P_{a}}{P_{b}}$ for this constellation We have 3 bits and the most likely error is crossing over to the nearest symbols. Since we only have 1 bit difference to the nearest symbol. $P_{b} = \frac{P_{a}}{3}$.

$$\begin{array}{cccc} \underline{A}, \underline{A}, \underline{C}, \underline{$$

= 4 × 40 dy We have 9 bits symbol for 16-0 AM ED, ON 8 bit energy, Eby = + X + X + AD dage or, Eng = 5 dyr = 2-Minimum distance of 69-QATA: And symbol energy = - for x 4 [2d2 + 2 (10d2) + 18d2 + 2 (2695, + 5 (34995, + 3 (2095) + 2(58 d22) + 2(74 d22) + 98 d2) 5/ = 4 × 672 dz 69-QAM we have 6 lite/ symbol. 405 801 ang. hit energy, Ebz= , & x 672 dz 11.0 min 08, [Ebz = 7022 - 8-Now, it is given that the Eb's are same, $12, \quad]E_{by} = E_{by} = E_{bz} = E_{b}$ Dett/ april : From () we have, E1 = d12 or, (d1= VED) From Due have, EL = 5 dy or, dy = 12 Eb R From Dive have, Eb = 7dz" "or, dz= VEE $d_{y} = \sqrt{\frac{1}{5}} d_{z}$ me; Som: Given, 1. 1.42 $Q \cdot Q$ Meridian like to per 151 - 51 - 55 - 1 (damp) gets 1 of Propilling +

We know, vitation of a constellation doesn't change the fe.
SD, votating the above constellation, we get

$$s_1$$
 s_2 s_3
 s_4 s_2 s_4 s_4
 s_4 s_2 s_4 s_4
 s_4 s_4 s_5 s_6 s_1
 s_5 s_6 s_1 s_5 s_6 and s_6 , we have
 $f_c = (1-q)(1-2q)$
and considering the points s_2 and s_5 , we have
 $f_c = (1-q)(1-2q)$
 s_1 $f_c (s_1, g) = \frac{1}{5} [(1+q)^2 - 2q) \times 1q + (1-q)(1-2q) \times 2]$
 $= \frac{1}{5} [(1+q)^2 - 2q) \times 1q + (1-3q + 2q)^3 \cdot 2]$
 $z = \frac{1}{5} [(1+q)^2 - 2q) \times 1q + (1-3q + 2q)^3 \cdot 2]$
 $z = \frac{1}{5} [(1+q)^2 - 2q) \times 1q + (1-3q + 2q)^3 \cdot 2]$
 $z = \frac{1}{5} [(1+q)^2 - 2q) \times 1q + (1-3q + 2q)^3 \cdot 2]$
 $z = \frac{1}{5} [(1-q)q + 2q)^2 + \frac{1}{5} (q + \frac{1}{5} q^2)]$
 s_1 $f_c (s_1g) = \frac{1}{5} [(1-q)q + 2q)^2 + \frac{1}{5} (q^2 - \frac{1}{5} q^2)$
 s_2 $f_c (s_1g) = \frac{1}{5} [f_c (s_1g) = \frac{1}{5} [f_c - 14q + 2q^2]$
 s_2 $f_c (s_1g) = \frac{1}{5} [f_c (s_1g) = \frac{1}{5} [f_c - 14q + 2q^2]$
 s_2 $f_c (s_1g) = \frac{1}{5} [f_c (s_1g) = \frac{1}{5} [f_c - 14q + 2q^2]$
 s_3 $f_c (s_1g) = \frac{1}{5} [f_c (s_1g) = \frac{1}{5} [f_c - 14q + 2q^2]$
 s_4 $f_c (s_1g) = f(s_1) = f(s_1$

(1) Anundeny usike S5:

$$P(15'' vecented) S_2 transmitted) \cdot P(12 transmitted) +> P(12'' vecented) S_2 transmitted)
 $P(15'' vecented) S_2 transmitted) \cdot P(12 transmitted) +> P(12'' vecented) S_2 transmitted)
 $P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
 $P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' transmitted)
P(12'' vecented) S_2 transmitted)
P(12'' vecented) S_2 transmitted) + P(12'' transmitted)
P(12'' vecented) + P(12'' transmitted) + P(12'' transmitted)
P(12'' vecented) + P(12'' transmitted) + P(12'' transmitted)
P(12'' transmitted)
P(12'' transmitted) + P(12'' transmitted) + P(12'' transmitted)
P(12'' transmitted) + P(12'' transmitted) + P(12'' transmitted)
P(12'' transmitted) + P(12'''$$$$$

the second to be

$$\begin{aligned} & \alpha_{1} \quad 1 - 3d \quad \leq \quad \frac{\ln \ln n^{1}}{\ln d} \\ & \alpha_{1} \quad 1 \leq \quad \frac{\ln \ln n}{\ln d} + 12d \\ & \alpha_{1} \quad 1 \leq \quad \frac{\ln \ln n}{\ln d} + 12d \\ & \beta_{1} \quad (1 \leq 1) \leq \frac{\ln \ln n}{\ln d} + 12d \\ & \beta_{1} \quad (1 \leq 1) \leq \frac{\ln \ln n}{\ln d} + 12d \\ & \beta_{2} \quad (1 \leq 2) \leq \frac{\ln \ln n}{\ln d} + \frac{1}{\ln d} \\ & \beta_{2} \quad (1 \leq 2) \leq \frac{1}{\ln d} + \frac{1}{\ln d} \\ & \beta_{2} \quad (1 \leq 1) \leq \frac{1}{\ln d} + \frac{1}{\ln d} +$$

9.0 (a) for N=2, the signal constellation would look something like this: 0 -21 -24 (b) To find Re, we just consider the two constellations points @ (0,0) & (30,0) and the others would follow: : $P_{c} = 4x + \frac{1}{8} \left[\int_{0}^{2d} (1 - 2a(x)) dx \right] + 4x + \left[\int_{0}^{\infty} (1 - q(x)) dx \right]$ or $P(= \frac{1}{2} \begin{bmatrix} \int dd (1 - \partial q(x)) dx \end{bmatrix} \neq \frac{1}{2} \begin{bmatrix} \int dd (1 - q(x)) dx \end{bmatrix}$ where $\varphi = Q(\frac{d}{\sigma}) = Q(\frac{d}{\sqrt{NQ_{3/2}}})$ 0. We know for nearest neighbour approx: -0 -20 Pez In Z mi Q (dri Consider the point @ (0,d). The manest neighbours to this point are (d. of 2 (-d. i) Q distance (3d. for (0,d) point, le = + 2 a. Q (vad) or, R = 2Q(VIZ) & now considering the point @ (30,0) the rearest neighbour to this point is @ (did) at distance ad. for (30,0) point, &= + = + = I. Q(2) oribe = d(dd). Hence, now the union bound would be, le < 20 (12) + 0(13) N, R & 20 (420) + 0 (20) Ans:

Scanned with CamScanner