

)	2		<		
(g) With Gray-coding done, compare the simulated bit error rate (BER) of QPSK and 16-QAM. (<i>Hint</i> : while you are measuring the SEK in parts (e) and (f), you can also compute the BER for both the modulations). Plot these two results together in Fig-4, again for Eb=1 in both cases. Note that for computing BER, you will	(f) Repeat part (d) for the 16-QAM signal set. Chose the rv to symbol mapping appropriately and explain how you did it. Plot this result back in Fig-3.	(e) Repeat part (c) above for the 16-QAM signal set. Call this Fig-3.	(d) Now, we wish to simulate the symbol error rate (SER) for QPSK. For generating the transmit symbols, use uniform random variable (rv) between (0,1). If the rv takes a value X between 0 and 0.5, it is mapped to say -d; else, it is mapped to +d, where 2d is the distance between the symbols. We will need 2 rvs, one of the real part and one for the imaginary part. Chose "d" to ensure Eb=1. Generate 10 ⁵ symbols to measure the SER over the same range of SNRs as in part (c). Plot your results back in Fig-2. Comment.	 (c1) Union bound using <i>all</i> the pairwise symbol errors (c2) Union bound using only the <i>nearest neighbours</i> (c3) In part (c2) replace the <i>erfc</i>() function with the Chernoff bound and add this also to Fig-2. 	(c) For the QPSK signal set, compute using the following approximations to the symbol error probability. Plot each of these values of P_s for the range of SNRs from 0dB to 16dB in the same figure. Call it Fig-2.	(b) Assuming Gray coding, plot $10\log_{10}(\text{Eb/No})$ versus $\log_{10}(P_B)$ for the 3 signals. Add these curves also to Fig-1, and label neatly.	will be complex with variance N ₀ /2 per dimension. Vary the ratio $10\log_{10}(Eb/No)$ in 2dB steps from 0dB to 10dB, by changing the noise variance and plot against $\log_{10}(P_S)$, for all the 3 signals. Chose Eb=1 for all the signals. Note that the log of the error probability is plotted on the y-axis. The $Q(.)$ function or the <i>erfc</i> (.) function can be evaluated using Matlab.	(a) For the same energy per bit, Eb, compute and plot on the same figure (Fig-1) the P _S of BPSK, QPSK, and 16-QAM signals. Assume the complex base-band AWGN measurement model $r(k) = I(k) + v(k)$ where iid $I(k)$ is uncorrelated with the white Gaussian poice $v(k)$. For some two signals (OPSK and 16-OAM) the noise	2. [15 marks] In this question, we compare the theoretical probability of symbol error $P(e) = P_s$ and a perioditie of the error, P_B , with computer simulated symbol or bit error rate (SER or BER), for a few popular linear modulation schemes. The approximation on P_s using bounds will also be studied.

