Department of Electrical Engineering, IIT Madras
EE3005: Communication Systems

Tutorial #5

1. From the enclosed scanned problem sheets below( Courtesy: taken from the book “Probability, RVs,
and Stochastic Processes”, by A. Papoulis, 2"Ed., Chapter 6, pp-147,) do the following problems:
6-1 to 6-3, 6-5 to 6-10. Use the method of “dummy variable” wherever it makes sense.
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2. In a fair-coin experiment, we define a random process (RP) X(t) as follows: X(t) = sin (mt) is heads
show, and X(t) = 2t if tails show.

(@) Find E[X(t)]

(b) Find the one-dimensional (first-order) PDF of X (t;) for (i) t; = 0.25; (ii) t, = 0.50; (iii) t; = 1.0;

3. The RP X(t) = e is a family of exponentials based on the RV A with a pdf f,(a). Express Ry (t;,t,)
and the first order PDF fx (t) in terms of f;(a).

4. The RV g be uniform in the interval (0,T). The RP is defined by X(t) = U(t — B) where U(.) is the
unit-step function. Find the expression(s) for Ry (t,, t,).

5. Show that if the RP V() has Ry (t1, t,) = g(t;)8(t; — t,) and the RP W (t) = [, V(t)dr then,
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6. Show that if the RP X(t) has Ry (ty,t;) = g(t1)d(t; — t;) and the RP Y (t) = X(t) * h(t) where the
symbol “*” represents linear convolution, then,

E[X(®)Y ()] = h(0)g(t)

7. The discrete RP X (n) is WSS with Ryx(m) = 55 (m). Given
Y(n) —05Y(n—1) = X(n) (D
(@) Find E[Y?(n)], Rxy(m,,m,), & Ryy(m,, m,) when (1) holds for all n.
(@) Find E[Y?(n)], Ryy(my,m5), & Ryy(my,my,) if Y(—1) = 0 and (1) holds for all n > 0.

8. Consider the following “pulse-shapes’ and answer the following questions given that 8 is a uniform
RV between (0,T):
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(a) If the RP X (¢t)is given by X(t) = X2 ., gi(t — kT — 0), for each choice of g;(t),i = 1,2,&3 find
(i) The first order PDF fy (x) and (ii) the expected value my = E[X].

(b) If the RP Y (¢t)is given by Y (t) = Y32 o ay gi(t — kT — 6), where the discrete RV a; € {—1,+1}
takes both values with equal probability, then, for each choice of g;(t),i = 1,2, &3 find (i) The first order
PDF fy (v) (ii) the expected value m, = E[Y], and (iii) the expression for Ry (t;, t,) and also plot this
function if it represents a WSS process.
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