EE-1100 Basics of EE @ IIT Palakkad

Oct. 23, 2016Tutorial #4KG / IITMTraffic Engineering – Erlang B formula, Multistage SwitchingKG / IITM

1. What is the amount of traffic *E* that can be accepted by M=2 servers if a high blocking probability $P_b = 0.50$ is allowed?

(a) Repeat when the allowed $P_b = 0.02$.

(b) Defining the output utilization factor $\gamma = (1 - P_b)E/M$, what is it for the above 2 cases of P_b ?

2. Repeat the steps in Pbm. 1 for the case of M=3 servers.

3. Given a population of *N*=20,000 users, each offering *Eu*=0.04 Erlangs of traffic, define a 3-stage blocking switch with *k* sub-arrays in the middle-stage, each containing 250x250 cross-points such that the blocking probability $P_b \le 10^{-3}$. Use the Lee graph approach to find this least value of *k*.

(a) Determine the number of cross-points for the above switch.

(b) Rework value of k and part (a) if we require $P_h \le 10^{-6}$.

(c) For the same size of the middle-stage sub-arrays (i.e., same size of m and n) as in (a), define a non-blocking switch. How does the complexity of this switch compare to (a)?

(d) For these N=20,000 users, what will be the least complexity of a 3-stage <u>non-blocking</u> switch if one had the flexibility to choose any *n* (and *k*) ? (Recall in our notation: N=nm)

4. A total of N=4096 lines have to be switched, where each line offers Eu=0.05 Erlangs of traffic. All the 3 stages of the switch are to be built using sub-arrays of size 64x64 (where in the input and output stages, not all lines need be utilized if k < 64).

(a) Define a blocking switch such that blocking probability $P_b \le 10^{-3}$. What is it's complexity (including the unutilized cross-points)?

(b) Is it possible to build a <u>non-blocking</u> 3-stage switch in this case? If so, specify the same and it's complexity. (*Hint*: In a non-blocking 3-stage switch, imagine the ith user calling the jth user and they belong to different nxk blocks. For the worst case scenario, the other n-1 users from the input block where the ith user belongs could be busy, and similarly, the other n-1 users where the jth user belongs could be busy in the output block.)

5. The first 400 inlets carry users with Eu=0.05 Erlangs while the next 600 inlets carry users with Eu=0.01 Erlangs. Given that the users are grouped into blocks of n=50 each, define a 3-stage blocking switch with overall $P_b \le 10^{-2}$. What is the total number of cross-points in this switch? *Hint*: The overall P_b is computed by considering the 4 cases, namely user from set1 calls another user in set1, or user from set1 calls user from set2, etc.

6. Consider a population of *N*=4000 users, each of E_u =0.01 Erlangs. Design a 3-stage blocking switch of least complexity such that the blocking probability P_b =10⁻⁴ or less. What is *k*, and the total number of cross-points for this switch? <u>*Hint*</u>: To minimize the total number of cross-points, choose the input sub-array dimension *n* "appropriately" where *N/m*=*n*.

7. (Optional) Consider the 5-stage switch in the book, first described in page 237, Fig. 5.9. Here, blocking is introduced also in the middle stage(s). The input has N/n_1 sub-arrays, each of dimension $n_1x k_1$, where N is the total population to be served by this switch. The middle-stage (which is actually a blocking switch with 3-stages) has k_1 sub-arrays, each of size $N/n_1x N/n_1$. Each of these sub-arrays has $N/(n_1x n_2)$ sub-arrays, of dimension n_2xk_2 where k_2 is the number of middle stage sub-arrays (each of dimension $N/(n_1x n_2) \times N/(n_1x n_2)$). Assume each user offers E_u Erlangs of traffic.

(a) Prove using the Lee-Graph approach that blocking probability of the 5-stage switch is given by

$$P_b = \left\{ 1 - q_1^2 \left[1 - (1 - q_2^2)^{k_2} \right] \right\}^{k_1} \text{ where } q_1 = (1 - p_1) \text{ with } p_1 = \frac{n_1 E_u}{k_1} \text{ and } q_2 = (1 - p_2) \text{ with } p_2 = \frac{n_2 p_1}{k_2}.$$

(b) For N=50,000, and $n_1=50$ and $n_2=50$, find the 5-stage switch with minimum number of cross-points so that $P_b=10^{-8}$ or less. Assume $E_u = 0.01$ Erlangs each.

(c) Can you find a better choice of n_1 and n_2 for this case? (i.e., a choice that will minimize the number of cross-points further?)