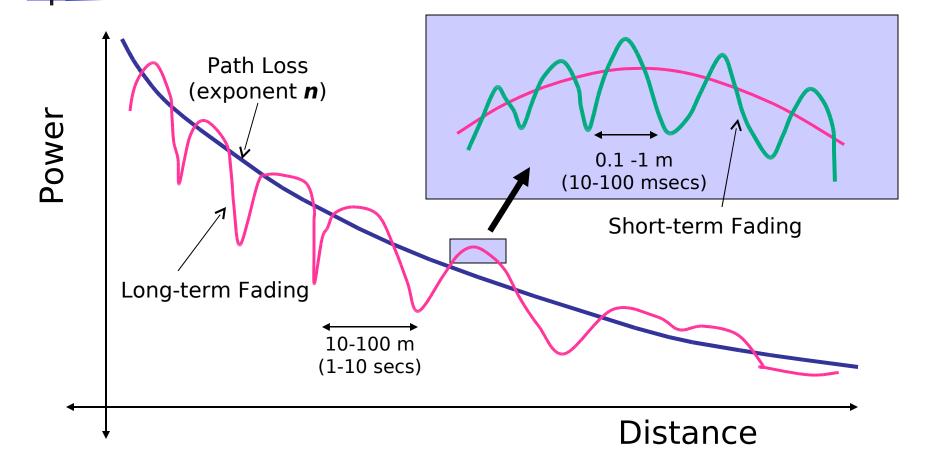


EE110 -- Basics of Electrical Engineering

RF Fundamentals

K. Giridhar


Professor of Electrical Engineering Telecom & Networks (TeNeT) Group Indian Institute of Technology Madras Chennai 600036

www.ee.iitm.ac.in/~giri

Contents

- 1. Terrestrial Wireless Propagation
- 2. Path Loss Long Term, Short Term
- 3. Noise Figure of Receiver
- 4. Example: Communication Link Budget

1. Basics of Terrestrial Radio Propagation

2. Path Loss -- Long Term Losses

• Free-space Propagation $(n=2) \rightarrow$ Received

Power P_T – Power at Tx port of Isotropic Antenna inWatts Power density atG distance $d = P_T / 4\pi d^2$ Watts/m² G_T – Directivity or Gain in a particular direction Effective Isotropically Radiated Power (EIRP)= $P_T G_T$ Received power extracted by Rx is proportional to the effective area A_R of the Rx antenna

$$P_R = \frac{P_T G_T}{4\pi d^2} A_R$$
 Watts

Aside: Effective Area of Rx Antenna

From EM Theory, the effective area A_R of the Rx antenna is related to the Rx antenna directivity G_R as follows

$$A_{R} = \frac{G_{R}}{(4\pi/\lambda^{2})} \,\mathrm{m}^{2}$$

where λ is the wavelength of carrier

Example 1: For parabolic dish antenna of diameter D

 $A_{\rm R} = \frac{\pi D^2}{4}\eta$, where illumination efficiency 0.5? η ? 0.6

Therefore, the directivity (gain) for the antenna is

$$G_R = \eta \underbrace{\widehat{\phi} D}_{\widehat{\phi} \lambda} \underbrace{\widehat{\phi}}_{\widehat{\lambda}}$$

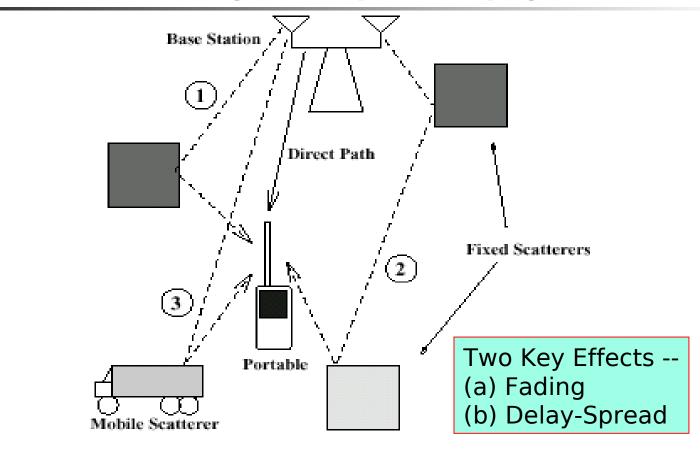
Feb. 2008 / EE110 – Basics of EE

Received power (for *n*=2)

Substitution of
$$A_R = \frac{R^2}{\sqrt{\pi}} \int_R^2 G_R$$
 gives Rx power
 $P_R = \frac{P_T G_T G_R}{(4\pi d / \lambda)^2}$ Watts

Taking 1milliwatt = 0dBm, this can be expressed in a convenient Log (dBm) scale as $P_R(dBm) = P_T(dBm) + G_T(dBi) + G_R(dBi) - L_d(dB)$ where

 $L_d = 10\log_{10}((4\pi d/\lambda)^n) \text{ dB}$ -- in free space, n=2


Factors affecting Rx Power

In the presence of large-scale scatterers (buildings, usually) a random variation is expected (also called long-term fading) $P_R(dBm) = P_T(dBm) + G_T + G_R - L_d - L_{shadow} - L_{cable}$ where L_{shadow} (in dB) is an random-variable with pdf N(0, σ), and standard-deviation σ is in dB scale -- log-normal distribution; L_{cable} (in dB) is the RF cable loss (specified in dB/meter). Shadow-loss, Cable-loss, and antenna mis-alignment is sometimes clubbed into a single "Installation margin" term (in dB)

What about short-term fading?

 $P_R(dBm) = P_T(dBm) + G_T + G_R - L_d - L_{shadow} - L_{cable} - L_{fading}(dB)$

Short-term Fading - Multipath Propagation

$$r(t) = \alpha_0 s(t-\tau_0) + \alpha_1 s(t-\tau_1) + \alpha_2 s(t-\tau_2) + \alpha_3 s(t-\tau_3)$$

K.Giridhar, IITM

How much Rx Power is required?

Minimum P_R (dBm) required depends on SNR needed for a target BER!
This required SNR (specified in dB) is a function of:
(a) Receiver Sensitivity ? f(bandwidth, RF design, Baseband algorithms, architechture, implementation)
(b) Digital Modulation and Coding used for getting the target BER

- Key Question: How to relate P_R and SNR?
- Answer: Understand receiver noise power!

3. Rx Noise Figure

Thermal noise (passives) dominates over shot noise (actives); at temperature T Kelvins, for bandwidth Δf Hz, Noise Power = $N_o \Delta f = kT \Delta f$ k = 1.38? 10⁻²³ (Boltzmann const.)

Example 1: Room temp $T=300^{\circ}$ K and $\Delta f = 1$ MHz Noise spectral density $N_o = kT = -174$ dBm; Noise power $kT \Delta f = -174 + 60 = -114$ dBm; If signal power $P_T = -90$ dBm (say), then SNR = 24 dB

Rx Sensitivity -

Impact of Noise Figure and Modulation used

Example 1 (contd.): Room temp $T=300^{\circ}$ K and $\Delta f = 1$ MHz Noise power $kT \Delta f = -174 + 60 = -114$ dBm; a) If Rx noise figure F = 6 dB? noise floor rises to -108 dBm (for RF-BB combo chip, F could reflect base-band accuracy as well!)

b) Let the digital modulation technique used be Quadrature Phase Shift Keying (QPSK). For BER=10⁻³, QPSK requires in AWGN channels (and in the absence of any FEC), a SNR=6.7dB

- ? minimum signal strength required is -108+6.7 = -101.3 dBm
- ? sensitivity of the receiver is =-101.3 dBm
 - With diversity reception, turbo-coding, etc., required SNR for QPSK to (get same BER) would further reduce

4. Link Budget Example

Example 2: Communication link budget for GSM uplink Given $P_T = 100$ milliwatts, $G_T = 2$ dBi, $G_R = 15$ dBi, cable loss of 2dB, and no (zero) allowance for shadow loss or fading loss, compute the maximum link distance possible (in meters) for a GSM phone with a 5dB noise figure operating in the 800MHz band. GSM uses 200KHz channelisation (bandwidth), and requires a SNR=7dB to achieve the target BER=10⁻³. Assume free-space propagation on the uplink (i.e., exponent n=2), & $T=300^{\circ}$ K. Recall: $P_R(dBm) = P_T(dBm) + G_T + G_R - L_d - L_{coble}$ which conveniently $= P_T + G_T + G_R - L_{Im} - L_d - L_{coblo}$ where at 1m, $L_{\rm Im} = 10\log_{10}$, and $L_d = 10\log_{10}d^n$

K.Giridhar, IITM