Andrew Thangaraj
Aug-Nov 2020
Linear combination: \(a_1v_1+a_2v_2+\cdots\)
Examples: \(V=\mathbb{R}^3\)
\(a\ \begin{bmatrix}2\\ -1\\ 1\end{bmatrix}=\begin{bmatrix}2a\\ -a\\ a\end{bmatrix}\)
\(2\ \begin{bmatrix}5\\ 3\\ -4\end{bmatrix}+3.5\ \begin{bmatrix}2\\ -1\\ -2\end{bmatrix} = \begin{bmatrix}17\\ 2.5\\ -15\end{bmatrix}\)
\(4\ \begin{bmatrix}-2\\ 1\\ 6\end{bmatrix}-9\ \begin{bmatrix}5\\ -1\\ -3\end{bmatrix}+3\ \begin{bmatrix}1\\ 2\\ -2\end{bmatrix} = \begin{bmatrix}-50\\ 19\\ 45\end{bmatrix}\)
Linear combinations of a handful of vectors generate infinitely many vectors
Linear combinations are the essence of linear algebra
Vectors \(v_1,v_2,\ldots,v_m\in V\)
span\((v_1,v_2,\ldots,v_m)=\{a_1v_1+a_2v_2+\cdots+a_mv_m:a_i\in F\}\)
\(v=\begin{bmatrix}1\\2\end{bmatrix}\), span\((v)=\{\begin{bmatrix}a\\2a\end{bmatrix}:a\in\mathbb{R}\}\)
\(v_1=\begin{bmatrix}1\\2\end{bmatrix}\), \(v_2=\begin{bmatrix}2\\5\end{bmatrix}\), span\((v_1,v_2)=\{\begin{bmatrix}a+2b\\2a+5b\end{bmatrix}:a,b\in\mathbb{R}\}\)
Is \(\begin{bmatrix}3\\6\end{bmatrix}\) in the span? Is \(\begin{bmatrix}2\\5\end{bmatrix}\) in the span?
Is \(\begin{bmatrix}2\\10\end{bmatrix}\) in the span?
Examples: \(V=\mathbb{R}^3\)
\(v_1=\begin{bmatrix}1\\2\\3\end{bmatrix}\), \(v_2=\begin{bmatrix}2\\3\\4\end{bmatrix}\), span\((v_1,v_2)=\{\begin{bmatrix}a+2b\\2a+3b\\3a+4b\end{bmatrix}:a,b\in\mathbb{R}\}\)
\(v_1=\begin{bmatrix}1\\0\\0\end{bmatrix}\), \(v_2=\begin{bmatrix}0\\1\\0\end{bmatrix}\), \(v_3=\begin{bmatrix}0\\0\\1\end{bmatrix}\). Is \(\begin{bmatrix}x\\y\\z\end{bmatrix}\) in the span?
Example: \(V=\mathbb{R}^{1000}\)
100 vectors given: \(v_1\), \(\ldots\), \(v_{100}\)
Ask if 101-st vector is in the span?
\(U\subseteq V\) is a subspace if and only if \(U\) is closed under vector addition and scalar multiplication.
Exercise: span\((v_1,v_2,\ldots,v_m)\) is the smallest subspace containing \(v_i\).
Vectors \(v_1,v_2,\ldots,v_m\in V\) are said to be linearly dependent if there exist scalars \(a_1,a_2,\ldots,a_m\in F\), not all zero, such that \(a_1v_1+a_2v_2+\cdots+a_mv_m=0\).
Vectors \(v_1,v_2,\ldots,v_m\in V\) are said to be linearly independent if \(a_1v_1+a_2v_2+\cdots+a_mv_m=0\) implies \(a_i=0\) for \(i=1,2,\ldots,m\).
\(v_1=\begin{bmatrix}1\\2\end{bmatrix}\), \(v_2=\begin{bmatrix}3\\6\end{bmatrix}\)
\(v_1=\begin{bmatrix}1\\2\end{bmatrix}\), \(v_2=\begin{bmatrix}2\\5\end{bmatrix}\)
\(v_1=\begin{bmatrix}1\\2\\5\end{bmatrix}\), \(v_2=\begin{bmatrix}3\\6\\15\end{bmatrix}\)
\(v_1=\begin{bmatrix}1\\2\\5\end{bmatrix}\), \(v_2=\begin{bmatrix}3\\6\\10\end{bmatrix}\)
Exercise: Prove that two vectors are linearly dependent if and only if one is a multiple of the other.
Examples: In \(V=\mathbb{R}^2\), are the following linear dependent or independent?
\(v_1=\begin{bmatrix}1\\0\end{bmatrix}\), \(v_2=\begin{bmatrix}0\\1\end{bmatrix}\), \(v_3=\begin{bmatrix}3\\17\end{bmatrix}\)
\(v_1=\begin{bmatrix}1\\2\end{bmatrix}\), \(v_2=\begin{bmatrix}2\\5\end{bmatrix}\), \(v_3=\begin{bmatrix}3\\17\end{bmatrix}\)
Exercise: Prove that any 3 vectors in \(\mathbb{R}^2\) are linearly dependent.
Examples: In \(V=\mathbb{R}^3\), are the following linear dependent or independent?
\(v_1=\begin{bmatrix}1\\0\\0\end{bmatrix}\), \(v_2=\begin{bmatrix}0\\1\\0\end{bmatrix}\), \(v_3=\begin{bmatrix}a\\b\\c\end{bmatrix}\)
\(v_1=\begin{bmatrix}1\\2\\5\end{bmatrix}\), \(v_2=\begin{bmatrix}3\\6\\7\end{bmatrix}\), \(v_3=\begin{bmatrix}a\\b\\c\end{bmatrix}\)