Andrew Thangaraj
Aug-Nov 2020
\(V\): finite-dimensional inner product space over \(F=\mathbb{R}\) or \(\mathbb{C}\)
An operator \(T:V\to V\) is said to be self-adjoint if \(T=T^*\).
In other words, \(\langle Tv,w\rangle=\langle v,Tw\rangle\) for \(v,w\in V\).
In terms of matrices
\(M(T)\): matrix of \(T\) w.r.t. an orthonormal basis
\(T\) is self-adjoint if \(M(T)\) is equal to its conjugate-transpose.
If \(T\) is self-adjoint, null \(T=\) \((\)range \(T)^{\perp}\)
Proof
null \(T=\) \((\)range \(T^*)^{\perp}=\) \((\)range \(T)^{\perp}\)
If \(T\) is self-adjoint, \(\langle Tv,v\rangle\in\mathbb{R}\)
Proof
\(\langle Tv,v\rangle=\langle v,T^*v\rangle=\langle v,Tv\rangle\)
and
\(\langle Tv,v\rangle=\overline{\langle v,Tv\rangle}\)
\(F=\mathbb{R}\)
\(v\): eigenvector of \(T\) with eigenvalue \(\lambda\)
Since \(v\) is real and \(Tv\) is real, \(\lambda\) has to be real.
\(F=\mathbb{C}\)
Eigenvalues can be complex.
Example
\(A=\begin{bmatrix} 0&1\\ -1&0 \end{bmatrix}\)
Eigenvalues: \(i\), \(-i\)
Eigenvectors: \((1,i)\) for \(i\), and \((-1,i)\) for \(-i\)
Every eigenvalue of a self-adjoint operator is real.
Proof
\(T=T^*\) and \(\lambda\) is an eigenvalue with eigenvector \(v\ne0\)
\(\lambda\lVert v\rVert^2=\langle \lambda v,v\rangle=\langle Tv,v\rangle=\langle v,Tv\rangle=\langle v,\lambda v\rangle=\bar{\lambda}\lVert v\rVert^2\)
\(\lambda=\bar{\lambda}\)
Example
\(A=\begin{bmatrix} 0&1\\ -1&0 \end{bmatrix}\)
\(\langle Ax,x\rangle=0\) for all \(x\in\mathbb{R}^2\)
In real spaces, there are non-trivial \(T\) s.t. \(\langle Tv,v\rangle=0\) for all \(v\).
What about complex inner product spaces?
Example: \(\langle Ax,x\rangle=\langle (i,-1),(1,i)\rangle=2i\) for \(x=(1,i)\)
There exists \(x\in\mathbb{C}^2\) for which \(\langle Ax,x\rangle\ne0\).
\(V\): inner product space over \(\mathbb{C}\).
If \(\langle Tv,v\rangle=0\) for all \(v\), then \(T=0\).
Proof
\(\langle Tv,v\rangle=0\) for all \(v\)
\(\begin{align} \langle Tu,w\rangle &= \dfrac{1}{4}\langle T(u+w),u+w\rangle-\dfrac{1}{4}\langle T(u-w),u-w\rangle\\ &+\dfrac{i}{4}\langle T(u+iw),u+iw\rangle-\dfrac{i}{4}\langle T(u-iw),u-iw\rangle \end{align}\)
So, \(\langle Tu,w\rangle=0\) for all \(u,w\)
Set \(w=Tu\) to get \(\lVert Tu\rVert=0\) for all \(u\)
So, \(T=0\)
\(V\): inner product space over \(\mathbb{C}\).
\(T\) is self-adjoint iff \(\langle Tv,v\rangle\in\mathbb{R}\) for all \(v\).
Proof
\(\langle Tv,v\rangle-\overline{\langle Tv,v\rangle}=\langle Tv,v\rangle-\langle v,Tv\rangle=\langle (T-T^*)v,v\rangle\)
\(\langle Tv,v\rangle\in\mathbb{R}\) implies LHS = 0, which implies \(T=T^*\)
\(T=T^*\) implies RHS = 0, which implies \(\langle Tv,v\rangle\in\mathbb{R}\)
\(V\): inner product space over \(\mathbb{R}\) or \(\mathbb{C}\).
If \(T\) is self-adjoint and \(\langle Tv,v\rangle=0\) for all \(v\), then \(T=0\).
Proof
Over \(\mathbb{C}\), result is true even if \(T\) is not self-adjoint.
Over \(\mathbb{R}\), when \(T\): self-adjoint, we have
\(\langle Tu,w\rangle = \dfrac{1}{4}\langle T(u+w),u+w\rangle-\dfrac{1}{4}\langle T(u-w),u-w\rangle\)
So, \(\langle Tu,w\rangle=0\) for all \(u,w\)
Set \(w=Tu\) to get \(\lVert Tu\rVert=0\) for all \(u\)
So, \(T=0\)