Andrew Thangaraj
Aug-Nov 2020
Unitary matrix
\(n\times n\) matrix \(V\) is said to be unitary if its columns are orthonormal.
Unitary matrices represent isometries
\(VV^*=V^*V=I\) (\(V^*\) is conjugate-transpose)
Rectangular diagonal matrices
\(m\times n\) matrix \(D\) with \((i,j)\)-th element \(d_{ij}\)
Main diagonal of \(D\): \((1,1),(2,2),\ldots\)
\(D\) is diagonal if the only nonzero values of \(D\) are on the main diagonal
\(A\): \(m\times n\) matrix
Singular values: eigenvalues of \(\sqrt{A^*A}\) or \(\sqrt{AA^*}\)
Right-singular vectors: orthonormal eigenvectors of \(A^*A\)
Left-singular vectors: orthonormal eigenvectors of \(AA^*\)
SVD: There exist
such that \(A=UDV^*\).
\(U\): columns are left-singular vectors
\(V\): columns are right-singular vectors
\(D\): singular values on main diagonal
\(A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}\) (standard basis)
Singular values of \(A\): \(\sigma_1=9.508\), \(\sigma_2=0.773\), \(\sigma_3=0\)
Right-singular vectors of \(A\): \(e_1=(0.429,0.566,0.704)\), \(e_2=(0.805,0.112,-0.581)\), \(e_3=(0.408,-0.816,0.408)\)
Left-singular vectors of \(A\): \(f_1=(0.386,0.922)\), \(f_2=(-0.922,0.386)\)
\(A=\begin{bmatrix} 0.386&-0.922\\ 0.922&0.386 \end{bmatrix}\begin{bmatrix} 9.508&0&0\\ 0&0.773&0 \end{bmatrix}\begin{bmatrix} 0.429&0.566&0.704\\ 0.805&0.112&-0.581\\ 0.408&-0.816&0.408 \end{bmatrix}\)
Basis for \(\mathbb{R}^3\): \(e_1\), \(e_2\), \(e_3\); Basis for \(\mathbb{R}^2\): \(f_1\), \(f_2\)
\(A\) in above basis: \(\begin{bmatrix} 9.508&0&0\\ 0&0.773&0 \end{bmatrix}\) (diagonal)
\(T:V\to W\), linear map
\(B_V\): basis of \(V\), \(B_W\): basis of \(W\)
\(M(T,B_V,B_W)\): matrix of \(T\) w.r.t. \(B_V\) and \(B_W\)
SVD: There exist
such that \(M(T,B_V,B_W)\) is diagonal.
\(B_V\): right-singular vectors; \(B_W\): left-singular vectors
\(M(T,B_V,B_W)\): singular values on diagonal
Lemma: For \(v\in V\), \(\lVert Tv\rVert=\lVert\sqrt{T^*T}v\rVert\)
Proof of Lemma
\(\begin{align} \langle Tv,Tv\rangle &= \langle T^*Tv,v\rangle\\ &= \langle \sqrt{T^*T}\sqrt{T^*T}v,v\rangle\\ &= \langle \sqrt{T^*T}v,\sqrt{T^*T}v\rangle\\ \end{align}\)
range \(T=\{Tv:v\in V\}\), range \(\sqrt{T^*T}=\{\sqrt{T^*T}v:v\in V\}\)
Let \(S:\) range \(\sqrt{T^*T}\to\) range \(T\) be s.t. \(\sqrt{T^*T}v\) is mapped to \(Tv\)
Properties of \(S\)
\(S\) is well-defined. If \(\sqrt{T^*T}v_1=\sqrt{T^*T}v_2\), then \(Tv_1=Tv_2\).
\(S\) is linear. \(S\) is one-to-one and onto.
For \(u\in\) range \(\sqrt{T^*T}\), \(\lVert u\rVert=\lVert Su\rVert\).
For \(u_1,u_2\in\) range \(\sqrt{T^*T}\), \(\langle u_1,u_2\rangle=\langle Su_1,Su_2\rangle\).
\(\{e_1,\ldots,e_n\}\): orthonormal eigenvector basis of \(\sqrt{T^*T}\) (and \(T^*T\))
\(\sigma_1,\ldots,\sigma_n\): corresponding eigenvalues or singular values of \(T\)
Suppose \(k=\) rank \(\sqrt{T^*T}\); \(\sigma_1\) to \(\sigma_k\): nonzero.
\(\{\sqrt{T^*T}e_1,\ldots,\sqrt{T^*T}e_k\}\): orthogonal basis of range \(\sqrt{T^*T}\)
\(\{Te_1,\ldots,Te_k\}\): orthogonal basis of range \(T\) (by Property 4)
\(\sigma_i=\lVert\sigma_ie_i\rVert=\lVert\sqrt{T^*T}e_i\rVert=\lVert Te_i\rVert\)
\(\{f_1=\dfrac{1}{\sigma_1}Te_1,\ldots,f_k=\dfrac{1}{\sigma_k}Te_k\}\): orthonormal basis of range \(T\)
\(\{f_1,\ldots,f_k,\ldots,f_m\}\): orthonormal extension to basis of \(W\)
\(T\): diagonal w.r.t. basis \(\{e_1,\ldots,e_n\}\) for \(V\) and \(\{f_1,\ldots,f_m\}\) for \(W\)
Singular values on diagonal
\(TT^*f_i=\dfrac{1}{\sigma_i}TT^*Te_i=\dfrac{1}{\sigma_i}T(\sigma_i^2e_i)=\sigma_i^2f_i\)
Notation: as in the proof
\(T\leftrightarrow \sigma_1f_1\overline{e^T_1}+\cdots+\sigma_kf_k\overline{e^T_k}\)
rank \(T\): number of nonzero singular values
range \(T\): orthonormal basis is \(\{f_1,\ldots,f_k\}\)
null \(T\): orthonormal basis is \(\{e_{k+1},\dots,e_n\}\)
Most numerical computations with matrices start with SVD today!