Column space, null space and rank of a matrix

Andrew Thangaraj

Aug-Nov 2020

Recap

  • Vector space \(V\) over a scalar field \(F\)
    • \(F\): real field \(\mathbb{R}\) or complex field \(\mathbb{C}\) in this course
  • Linear map \(T:V\to W\)
    • \(T(au+bv)=aT(u)+bT(v)\)
  • Matrix of linear map with respect to bases for \(V\) and \(W\)
    • Basis for \(V\): \(\{v_1,\ldots,v_n\}\)
    • Column \(j\): coordinates of \(T(v_j)\) with respect to basis of \(W\)
  • null \(T=\{v\in V:Tv=0\}\), range \(T=\{Tv:v\in V\}\)
  • Fundamental theorem: dim null \(T\) + dim range \(T\) = dim \(V\)

From \(T:F^n\to F^m\) to an \(m\times n\) matrix

Basis for \(F^n\): \(\{v_1,\ldots,v_n\}\), basis for \(F^m\): \(\{w_1,\ldots,w_m\}\)

Matrix for \(T\): \(A=\begin{bmatrix} A_{11}&A_{12}&\cdots&A_{1n}\\ A_{21}&A_{22}&\cdots&A_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ A_{m1}&A_{m2}&\cdots&A_{mn} \end{bmatrix}\)

For input \(v=a_1v_1+\cdots+a_nv_n\leftrightarrow\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix}\),

\[\begin{align} Tv&=a_1\quad Tv_1\ +\cdots+a_n\quad Tv_n\\[5pt] &=a_1\begin{bmatrix}A_{11}\\A_{21}\\\vdots\\A_{m1}\end{bmatrix}+\cdots+a_n\begin{bmatrix}A_{1n}\\A_{2n}\\\vdots\\A_{mn}\end{bmatrix} \quad\leftrightarrow A\begin{bmatrix}a_1\\a_2\\\vdots\\a_n\end{bmatrix} \end{align}\]

Leads to definition of matrix-vector product

From an \(m\times n\) matrix to \(T:F^n\to F^m\)

\(A=\begin{bmatrix} A_{11}&A_{12}&\cdots&A_{1n}\\ A_{21}&A_{22}&\cdots&A_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ A_{m1}&A_{m2}&\cdots&A_{mn} \end{bmatrix}\)

  • Given an \(m\times n\) matrix \(A\), fix bases for \(F^n\) and \(F^m\)

    • \(\{v_1,\ldots,v_n\}\) and \(\{w_1,\ldots,w_m\}\)

    • say, standard bases

  • \(j\)-th column of \(A\): \(Tv_j\) expressed in \(\{w_1,\ldots,w_m\}\)

  • Input vector \(v\): expressed in \(\{v_1,\ldots,v_n\}\) as a column vector

  • Output \(Tv\): matrix-vector product

Column space and null space of a matrix

\(m\times n\) matrix \(A=\begin{bmatrix} A_{11}&A_{12}&\cdots&A_{1n}\\ A_{21}&A_{22}&\cdots&A_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ A_{m1}&A_{m2}&\cdots&A_{mn} \end{bmatrix}\) \(\leftrightarrow\) \(T:F^n\to F^m\)

  • null \(T\)
    • \(\{x\in F^n: Ax=0\}\)
    • solutions to homogeneous equations \(Ax=0\)
    • called null space of matrix \(A\)
    • nullity: dimension of null space
  • range \(T\)
    • \(\{Ax: x\in F^n\}\)
    • span of columns of \(A\)
    • called column space of \(A\), denoted colspace \(A\)
    • column rank or rank: dimension of column space

By fundamental theorem of linear maps, \(n=\text{rank}(A)+\text{nullity}(A)\).

Examples: \(2\times 2\), represents \(T:F^2\to F^2\)

\(A=\begin{bmatrix}0&0\\0&0\end{bmatrix}\)

  • colspace \(A = \{0\}\), rank = 0
  • null \(A = F^2\), nullity = 2

\(A=\begin{bmatrix}1&0\\2&0\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2)\}\), rank = 1
  • null \(A = \text{span}\{(0,1)\}\), nullity = 1

\(A=\begin{bmatrix}1&3\\2&6\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2)\}\), rank = 1
  • null \(A = \text{span}\{(-3,1)\}\), nullity = 1

Rank 1

  • At least one non-zero column
  • One column is a multiple of other column

Examples: \(2\times 2\), represents \(T:F^2\to F^2\)

\(A=\begin{bmatrix}1&0\\0&1\end{bmatrix}\)

  • colspace \(A = F^2\), rank = 2
  • null \(A = \{0\}\), nullity = 0

\(A=\begin{bmatrix}1&3\\2&4\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2),(3,4)\}\), rank = 2
  • null \(A = \{0\}\), nullity = 0

Rank 2

  • colspace = \(F^2\), null space = \(\{0\}\)
  • columns are linearly independent
  • called full rank or full column rank

Examples: \(3\times 2\), represents \(T:F^2\to F^3\)

\(A=\begin{bmatrix}1&3\\2&6\\3&9\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2,3)\}\), rank = 1
  • null \(A=\text{span}\{(-3,1)\}\), nullity = 1

Rank 1

  • At least one non-zero column
  • One column is a multiple of other column

\(A=\begin{bmatrix}1&3\\2&4\\3&5\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2,3),(3,4,5)\}\), rank = 2
  • null \(A=\{0\}\), nullity = 0

Rank 2

  • null space = \(\{0\}\)
  • col space = dim 2 subspace of \(F^3\)

Examples: \(2\times 3\), represents \(T:F^3\to F^2\)

\(A=\begin{bmatrix}1&3&5\\2&6&10\end{bmatrix}\)

  • colspace \(A = \text{span}\{(1,2)\}\), rank = 1
  • null \(A=\text{span}\{(-3,1,0),(-5,0,1)\}\), nullity = 2

Rank 1

  • At least one non-zero column
  • Columns are multiples of non-zero column

\(A=\begin{bmatrix}1&3&5\\2&4&6\end{bmatrix}\)

  • colspace \(A = F^2\), rank = 2
  • null \(A=\text{span}\{(1,-2,1)\}\), nullity = 1

Rank 2

  • col space = \(F^2\)
  • null space, rank 1

\(m\times n\) matrix representing \(T:F^n\to F^m\)

col space = span{columns}

  • use Gaussian elimination to reduce and find dimension

null space

  • use fundamental theorem to find dimension
  • solve homogeneous linear equation to find basis
  • dim colspace \(\le m\), dim null \(\le n\)

  • dim colspace \(\le n\)

  • \(m<n\)

    • dim null \(> 0\)
    • Not injective
  • \(m>n\)

    • dim colspace \(< m\)
    • Not surjective

Quiz