Andrew Thangaraj
Aug-Nov 2020
Rotation by angle \(\theta\)
\(R=\begin{bmatrix} \cos\theta&-\sin\theta\\ \sin\theta&\cos\theta\end{bmatrix}\)
Eigenvalues: \(e^{i\theta}\), \(e^{-i\theta}\)
No real eigenspace (no axis of rotation)
Reflection about \(x\)-axis
\(S=\begin{bmatrix} 1&0\\ 0&-1\end{bmatrix}\)
Eigenvalues: 1 and -1
Eigenspaces: \(x\)-axis is fixed, \(y\)-axis is flipped
Norms before and after transform
\(\lVert Rx\rVert=\lVert x\rVert\)
\(\lVert Sx\rVert=\lVert x\rVert\)
\(V\): inner product space over \(F=\mathbb{R}\) or \(\mathbb{C}\)
An operator \(T:V\to V\) is called an isometry if \(\lVert Tv\rVert=\lVert v\rVert\) for all \(v\)
Examples
\(A=\begin{bmatrix} \lambda_1&&0\\ &\ddots&\\ 0&&\lambda_n \end{bmatrix}\) with \(\lvert\lambda_i\rvert=1\)
\(A=\begin{bmatrix} 1&0&0\\ 0&\cos\theta&-\sin\theta\\ 0&\sin\theta&cos\theta \end{bmatrix}\)
Also known as
Real spaces: orthogonal operators
Complex spaces: unitary operators
\(F=\mathbb{C}\), \(T\): normal operator
\(T=\lambda_1 e_1\overline{e^T_1}+\cdots+\lambda_n e_n\overline{e^T_n}\)
\(\{e_1,\ldots,e_n\}\): orthonormal
Let \(x=x_1e_1+\cdots+x_ne_n\), \(\lVert x\rVert^2=\lvert x_1\rvert^2+\cdots+\lvert x_n\rvert^2\)
\(\lVert Tx\rVert^2=\lvert\lambda_1\rvert^2\lvert x_1\rvert^2+\cdots+\lvert\lambda_n\rvert^2\lvert x_n\rvert^2\)
A normal operator is an isometry if every eigenvalue has absolute value 1.
Interesing result: There are no other isometries
\(V\): inner product space over \(F=\mathbb{R}\) or \(\mathbb{C}\)
Suppose \(S:V\to V\) is an operator. The following are equivalent:
- \(S\) is an isometry
- \(\langle Su,Sv\rangle=\langle u,v\rangle\)
- If \(\{e_1,\ldots,e_n\}\) is orthonormal, so is \(\{Se_1,\ldots,Se_n\}\)
- There exists one orthonormal basis \(\{e_1,\ldots,e_n\}\) s.t. \(\{Se_1,\ldots,Se_n\}\) is orthonormal
- \(S^*S=SS^*=I\) (\(S\) is invertible and \(S^{-1}=S^*\))
- \(S^*\) is an isometry
Proof of (1) implies (2)
Real: \(\langle u,v\rangle=\dfrac{\lVert u+v\rVert^2-\lVert u-v\rVert^2}{4}\)
Complex: \(\langle u,v\rangle=\dfrac{\lVert u+v\rVert^2-\lVert u-v\rVert^2+i\lVert u+iv\rVert^2-i\lVert u-iv\rVert^2}{4}\)
Proof of (2) implies (3), (4)
\(\langle Se_i,Se_j\rangle=\langle e_i,e_j\rangle\)
Proof of (4) implies (5)
\(\langle S^*Se_i,e_j\rangle=\langle Se_i,Se_j\rangle=\langle e_i,e_j\rangle\) for all \(i,j\)
For \(u=u_1e_1+\cdots+u_ne_n\), \(v=v_1e_1+\cdots+v_ne_n\),
\(\begin{gather} \langle S^*Su,v\rangle\\[5pt] =u_1\overline{v_1}\langle S^*Se_1,e_1\rangle+\cdots+u_i\overline{v_j}\langle S^*Se_i,e_j\rangle+\cdots+u_n\overline{v_n}\langle S^*Se_n,e_n\rangle\\[5pt] =u_1\overline{v_1}\langle e_1,e_1\rangle+\cdots+u_i\overline{v_j}\langle e_i,e_j\rangle+\cdots+u_n\overline{v_n}\langle e_n,e_n\rangle\\[5pt] =\langle u,v\rangle\end{gather}\)
So, \(S^*S=I\), which implies \(SS^*=I\), \(S\) is invertible and \(S^{-1}=S^*\)
Proof of (5) implies (6), (1)
\(\lVert S^*v\rVert^2=\langle S^*v,S^*v\rangle=\langle SS^*v,v\rangle=\langle v,v\rangle=\lVert v\rVert^2\)
\(\lVert Sv\rVert^2=\langle Sv,Sv\rangle=\langle S^*Sv,v\rangle=\langle v,v\rangle=\lVert v\rVert^2\)
Corollary: Every isometry is normal
Proof: \(SS^*=S^*S=I\)
Corollary: A matrix represents an isometry if and only if (1) rows and columns have unit norm, (2) any two rows or columns are orthogonal.
\(V\): complex inner product space, \(S:V\to V\)
\(S\) is an isometry if and only if there exists an orthonormal basis of eigenvectors of \(S\) with every eigenvalue having an absolute value 1.
Proof
Converse
Normal with \(\lvert\lambda_i\rvert=1\) implies isometry (example)
Forward result
If \(S\): isometry, then \(S\) is normal and has an orthonormal eigenvector basis \(\{e_1,\ldots,e_n\}\)
Let \(Se_i=\lambda_i e_i\)
Taking norms,
\(\lvert\lambda_i\rvert=\lVert\lambda_i e_i\rVert=\lVert Se_i\rVert=\lVert e_i\rVert = 1\)