Andrew Thangaraj
Aug-Nov 2020
\(V\): inner product space, dim \(V=n\), \(T:V\to V\)
Type | Property |
---|---|
Any | dim null \(T\) + dim range \(T = n\) |
null \(T=\) \((\)range \(T^*)^{\perp}\) | |
dim range \(T=\) dim range \(T^*\) | |
Upper-triangular matrix w.r.t. orthonormal basis | |
Invertible | dim null \(T=0\), dim range \(T=n\) |
Diagonalizable | No special property |
Normal | null \(T=\) null \(T^*\), range \(T=\) range \(T^*\) |
null \(T=\) \((\)range \(T)^{\perp}\) |
(In a complex space) Self-adjoint iff \(\langle Tv,v\rangle\) is real
Normal iff \(\lVert Tv\rVert=\lVert T^*v\rVert\)
Isometry iff \(\langle Tu,Tv\rangle=\langle u,v\rangle\)