Andrew Thangaraj
Aug-Nov 2020
coordinates of a vector w.r.t. a basis
Basis for \(V\): \(B=\{v_1,\ldots,v_n\}\)
\(v\in V\) written as \(v=a_1v_1+\cdots+a_nv_n\)
\(v\leftrightarrow(a_1,\ldots,a_n)\) w.r.t. basis \(B\)
change of basis
Another basis for \(V\): \(B'=\{v'_1,\ldots,v'_n\}\)
\(v_i\in B\) written as \(v_i=b_{i1}v'_1+\cdots+b_{in}v'_n\)
Coordinates of \(v\) w.r.t. \(B'\)
\[v\leftrightarrow\begin{bmatrix} b_{11}\\\vdots\\b_{1n} \end{bmatrix}a_1+\cdots+\begin{bmatrix} b_{n1}\\\vdots\\b_{nn} \end{bmatrix}a_n=\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}\begin{bmatrix} a_1\\\vdots\\a_n \end{bmatrix}\]
any invertible matrix: represents a change of basis
\(v\leftrightarrow(a_1,\ldots,a_n)\) w.r.t. basis \(B=\{v_1,\ldots,v_n\}\)
\(v\leftrightarrow\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}\begin{bmatrix} a_1\\\vdots\\a_n \end{bmatrix}\) w.r.t. basis \(B'=\{v'_1,\ldots,v'_n\}\)
\(v'\leftrightarrow(a'_1,\ldots,a'_n)\) w.r.t. basis \(B'=\{v'_1,\ldots,v'_n\}\)
\(v'\leftrightarrow\begin{bmatrix} b'_{11}&\cdots&b'_{n1}\\ \vdots&\vdots&\vdots\\ b'_{1n}&\cdots&b'_{nn} \end{bmatrix}\begin{bmatrix} a'_1\\\vdots\\a'_n \end{bmatrix}\) w.r.t. basis \(B=\{v_1,\ldots,v_n\}\)
\(\begin{bmatrix} b'_{11}&\cdots&b'_{n1}\\ \vdots&\vdots&\vdots\\ b'_{1n}&\cdots&b'_{nn} \end{bmatrix}=\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}^{-1}\)
\(T:V\to W\), linear map
Matrix for \(T\) w.r.t. \(B_V,B_W\): \(\begin{bmatrix} \vdots&\cdots&\vdots\\ T(v_1)&\cdots&T(v_n)\\ \vdots&\cdots&\vdots \end{bmatrix}\)
Computing coordinates of \(T(v)\)
\(v=b_1v_1+\cdots+b_nv_n\)
\(T(v)=b_1T(v_1)+\cdots+b_nT(v_n)\)
Coordinates of \(T(v)\): \(\begin{bmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots\\ a_{m1}&\cdots&a_{mn} \end{bmatrix}\begin{bmatrix} b_1\\\vdots\\b_n \end{bmatrix}\)
\(I:V\to V\), identity map: \(I(v)=v\) for all \(v\in V\)
Matrix of \(I\)
\(I_n=\begin{bmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{bmatrix}\), identity matrix
Matrix of \(I\)
\(\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}\)
Identity map w.r.t. \(B_V\), \(B'_V\): coordinates under change of basis
Matrix of \(I\)
Input basis: \(B_V=\{v_1,\ldots,v_n\}\), Output basis: \(B'_V=\{v'_1,\ldots,v'_n\}\)
\(i\)-th column: \(I(v_i)=v_i\) w.r.t. \(B'_V\)
\(S=\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}\)
Matrix of \(I\)
Input basis: \(B'_V=\{v'_1,\ldots,v'_n\}\), Output basis: \(B_V=\{v_1,\ldots,v_n\}\)
\(i\)-th column: \(I(v'_i)=v'_i\) w.r.t. \(B_V\)
\(S^{-1}=\begin{bmatrix} b_{11}&\cdots&b_{n1}\\ \vdots&\vdots&\vdots\\ b_{1n}&\cdots&b_{nn} \end{bmatrix}^{-1}\)
\(T:V\to W\), linear map
Matrix for \(T\) w.r.t. \(B_V,B_W\): \(\begin{bmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots\\ a_{m1}&\cdots&a_{mn} \end{bmatrix}\)
Change of basis
view as composition
\(I(B_W\to B'_W)\ T(B_V\to B_W)\ I(B'_V\to B_V)\)
Matrix: (matrix for \(I\) in W) (matrix for \(T\)) (matrix for \(I\) in V)
\(T:V\to V\), linear operator
Matrix for \(T\): \(A=\begin{bmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{bmatrix}\)
change of basis
Matrix for \(T\): \(S\ A\ S^{-1}\)
similarity transform
\(S\): any invertible matrix
\(SAS^{-1}\): represents change of basis to \(\{\)columns of \(S\}\)