Andrew Thangaraj
Aug-Nov 2020
0,1,1,2,3,5,8,13,21,
\(a_k = a_{k-1}+a_{k-2}\), \(a_0=0, a_1=1\)
Let \(x_k=(a_k,a_{k-1})\)
\(x_k = \begin{bmatrix} 1&1\\ 1&0 \end{bmatrix}x_{k-1}\)
Eigenvalues: \(\dfrac{1+\sqrt{5}}{2}\), \(\dfrac{1-\sqrt{5}}{2}\)
Eigenvectors: \((\dfrac{1+\sqrt{5}}{2},1)\), \((\dfrac{1-\sqrt{5}}{2},1)\)
\(a_k=\dfrac{1}{\sqrt{5}}\left[\left(\dfrac{1+\sqrt{5}}{2}\right)^k-\left(\dfrac{1-\sqrt{5}}{2}\right)^k\right]\)
\(a_k\) = no. of binary sequences of length \(k\) with no consecutive 1s
\(b_k\) = no. of binary sequences of length \(k\) with no consecutive 1s ending in 0
\(c_k\) = no. of binary sequences of length \(k\) with no consecutive 1s ending in 1
\(a_k=b_k+c_k\)
\(b_{k+1}=b_k+c_k\), \(c_{k+1}=b_k\)
\(\begin{bmatrix} b_{k+1}\\ c_{k+1} \end{bmatrix}\begin{bmatrix} 1&1\\ 1&0 \end{bmatrix}\begin{bmatrix} b_k\\ c_k \end{bmatrix}\)
\(a_k=\dfrac{1}{\sqrt{5}}\left[\left(\dfrac{1+\sqrt{5}}{2}\right)^{k+2}-\left(\dfrac{1-\sqrt{5}}{2}\right)^{k+2}\right]\)