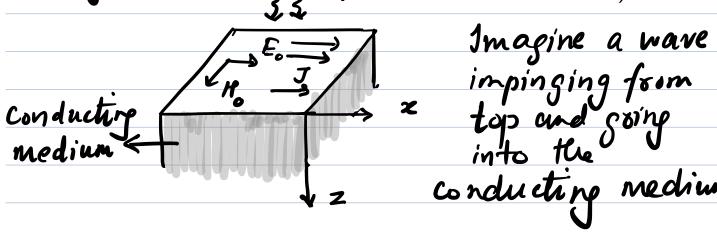

Current flow in a good conductor

In a DC case current flows uniformly a cross the wire cross-section.



However, in the AC case the story changes.

Most current flows near the surface.

4 Why does this happen! (or an applied voltage from L to R)

conducting medium.

Say that the E field at the interface z=0 is Es . Then the field at a z>0 is given as:

What is the magnetic field now?

$$H(z) = E_0 e^{-\alpha z} e^{-j\beta^2} \hat{y}$$
The proof of the induced current? $\hat{J} = \sigma \hat{E}$

$$= \hat{J}(z) = \sigma E_0 e^{-\alpha z} e^{-j\beta^2} \hat{x}$$

$$G(an this be simplified in a good conductor?

$$Y_{es} : \alpha = \beta(= |S_s| =) J_x = \sigma E_0 e^{-(1+j)z} \hat{S}_s$$

$$A/m^2$$

$$Y_{es} : \alpha = \beta(= |S_s| =) J_x = \sigma E_0 e^{-(1+j)z} \hat{S}_s$$

$$A/m^2$$

$$I = \iint dy dz J_z = W \int J_z dz$$

$$I = W \int \sigma E_0 e^{-(1+j)z/S_s} dz = J_0 w S_s (A)$$

$$Infact if we do $I_{36} = \iint J_x dy dz the$

$$error in I_{36} is < 5'. from the value of I.$$$$$$

Jhe empre ssion |
$$J_0 \omega \delta_s$$
| = $(J_0) \frac{\omega \delta_s}{\sqrt{J_2}}$

looks like a uniform current J_0 flowing in a box of size | δ_0 for size | δ_0 for a some like a const. δ_0 of δ_0 in a skin depth! No matter what the value of δ_0 is.

 $\Rightarrow J$ can some weight by making my conductors hollow. At I MHz, δ_0 = δ_0 for Copper.

 δ_0 the impedance of the δ_0 with δ_0 is:

 δ_0 , the impedance of the δ_0 for δ_0 is:

 δ_0 , the impedance of the δ_0 is:

 δ_0 the impedance of the δ_0 is:

This is usually written as $Z = Z_s \frac{l}{w}$ [idepa of surface internal impedance of the conductor Zs = Rs + jwLs => Rs = I , Ls = I woss

Surface intrinsie resistance. -) AC resistance is $R = R_s L = L L$ $w = S_s W$ This reminds us of DC resistance R = P L or L L where $A = S_S W$. What changed? Area - 6, W La Application of this? Consider Coax cable. 2at 25 equ 27 a 27 a 27 a 188, ... Resistance per length $R' = \frac{R}{L} = \frac{Rs L}{L W}$ = Rs · Sinnilarly, Rs/2776. Ned R= Rs(1+1)