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Abstract—Performance of spatial multiplexing multiple-input
multiple-output (MIMO) wireless systems can be improved with
channel state information (CSI) at both ends of the link. This
paper proposes a new linear diagonal MIMO transceiver, re-
ferred to as co-ordinate interleaved spatial multiplexing (CISM).
With CSI at transmitter and receiver, CISM diagonalizes the
MIMO channel and interleaves the co-ordinates of the input
symbols (from rotated QAM constellations) transmitted over
different eigenmodes. The analytical and simulation results show
that with co-ordinate interleaving across two eigenmodes, the
diversity gain of the data stream transmitted over the weaker
eigenmode becomes equal to that of the data transmitted on the
stronger eigenmode, resulting in a significant improvement in the
overall diversity. The diversity-multiplexing tradeoff (DMT) is
analyzed for CISM and is shown that it achieves higher diversity
gain at all positive multiplexing gains compared to existing
diagonal transceivers. Over rank n MIMO channels, with input
symbols from rotated n-dimensional constellations, the DMT of
CISM is a straight line connecting the endpoints (0, NtNr) and
(min{Nt, Nr}, 0), where Nt and Nr are the number of transmit
and receive antennas, respectively.

Index Terms—MIMO, spatial multiplexing, diversity,
beamforming, co-ordinate interleaving, precoding, diversity-
multiplexing gain tradeoff.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) wireless
systems employing multiple antennas at each end have

the potential to improve data throughput over time varying
fading channels [1]. In rich scattering environments, MIMO
channels provide multiple paths for data transmission and offer
multiple degrees of freedom to communicate [2]. Multiple
paths can be exploited to obtain diversity gain by transmitting
the same symbol over all the paths, and multiple degrees of
freedom can be used to increase the data rate through spatial
multiplexing [3].

Early spatial multiplexing systems were developed assum-
ing channel state information (CSI) only at the receiver. With
CSI at both ends, the transmit and receive algorithms can be
jointly designed to pre-process the data in a channel-dependent
way such that the system performance is further improved.
This is commonly known as transceiver design/optimization
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and many emerging wireless standards are actively considering
such concepts.

Several optimality criteria have been used for designing
MIMO transceivers with CSI at both ends. Some of them
include, minimizing the sum of the mean square error (MSE)
of all data streams under an average power constraint [4],
minimizing the weighted sum of MSEs [5], minimizing the
product of MSEs with a peak power constraint [6] and
maximizing the minimum Euclidean distance between the
received signal points [7]. All these linear transceivers diago-
nalize the MIMO channel as it simplifies the solution through
scalarization. Optimality of diagonal MIMO structures has
been investigated in [8], where the authors have proposed a
unified framework for designing diagonal MIMO transceivers
according to a variety of optimality criterion including mini-
mizing the average (or, overall) error probability. The uniform
channel decomposition (UCD) scheme of [9], referred as
UCD-VBLAST, is a non-linear transceiver that decomposes
the MIMO channel into multiple identical sub-channels and
equalizes the MSEs of all the data streams.

Diagonalizing the MIMO channel through singular value
decomposition (SVD) and transmitting multiple data streams
over the resulting parallel eigen sub-channels or eigenmodes,
is a well known and simple linear diagonal MIMO transceiver.
It is referred to as SVD transceiver (SVDTR) in rest of the
paper. The overall error rate performance of SVDTR, as well
as the more advanced diagonal transceivers such as those
proposed in [8], is degraded by the lower diversity gains of
weaker eigenmodes [10]. Most of the sophisticated diagonal
transceivers proposed in the literature improve coding gain
(compared to SVDTR) but not the diversity gain. Often, to
improve the diversity gain, data is transmitted only on the
stronger eigenmodes but this would render the remaining
degrees of freedom un-used.

In this paper, we propose a new linear diagonal transceiver,
referred to as co-ordinate interleaved spatial multiplexing
(CISM) that improves the diversity gain of weaker eigen-
modes. CISM diagonalizes the MIMO channel through SVD
and interleaves the co-ordinates of the symbols (chosen from
rotated QAM constellations) transmitted over strong and weak
eigenmodes. Analytical results presented in the paper show
that co-ordinate interleaving across eigenmodes k and l, hav-
ing diversity gains gd(k) and gd(l), respectively, results in a di-
versity gain of max{gd(k), gd(l)} on both the channels. Thus,
CISM significantly improves overall error rate performance
without necessarily leaving out the weak eigenmodes. Further,
the diversity-multiplexing tradeoff is analyzed for CISM to
show that it achieves higher diversity gain at all multiplexing
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gains compared to existing diagonal transceivers.
Notation: Bold upper case and lower case letters denote

matrices and vectors, respectively. akl denotes (k, l)th entry
of matrix A and bk denotes kth element in vector b. �x and
�x are real and imaginary parts of x and j :=

√−1. IN , (·)T

and (·)H denotes N × N identity matrix, transposition and
conjugate transposition, respectively. Pr{·}, E[·] and ‖ · ‖
denote the probability of the event in brackets, expectation
and L2-norm of a vector, respectively. �a� indicates largest
integer less than or equal to a.

II. SYSTEM MODEL

Consider a Nt × Nr MIMO system with Nt transmit and
Nr receive antennas. The discrete time baseband input-output
relation of the MIMO channel is

y = Hs + n, (1)

where s ∈ CNt×1 and y ∈ CNr×1 are transmit and receive
symbol vectors, respectively, H ∈ CNr×Nt is the channel
matrix, and n ∈ CNr×1 is the additive noise vector with
ni ∼ CN (0, σ2) and E[nnH ] = σ2INr . The channel gains
{hij} are assumed to be independent, frequency-flat Rayleigh
fading and hence, {hij} are i.i.d with hij ∼ CN (0, 1). We
define m := max{Nt, Nr}, n := min{Nt, Nr} and W :=
HHH when Nr ≤ Nt and W := HHH when Nr > Nt,
and consider a slow-fading environment. For uncorrelated
Rayleigh MIMO channels, rank(H) = n = min{Nt, Nr}.

Let the SVD of H be H = UΛVH , where U ∈ CNr×Nr

and V ∈ CNt×Nt are unitary matrices, and Λ ∈ RNr×Nt is a
diagonal matrix with

√
λk ∈ R+, the kth largest singular value

of H, as its kth diagonal element [11]. Let x ∈ CK×1, K ≤
n, be the symbol vector with xk ∈ Xk, 1 ≤ k ≤ K , where Xk

is a unit energy QAM signal set employed on the kth eigen
sub-channel, and E[xxH ] = IK . By transmitting s = VKPx,
where VK contains the first K columns of V, and by pre-
multiplying the received vector y with UH

K , we get

r = ΛKPx + w (2)

where r = UH
Ky, w = UH

Kn and ΛK = diag
({√λk}K

k=1

)
.

P = diag
({√pk}K

k=1

)
where pk ≥ 0 is the power allocated

to the kth data stream. The transmit power is constrained such
that

∑K
k=1 pk ≤ P , and SNR := P/σ2 is the average SNR at

each receive antenna.
K denotes the number of active eigenmodes or eigen sub-

channels and the transmission scheme discussed above is
referred to as SVD transceiver (SVDTR) in rest of the paper.
It is also called multiple beamforming [12], and maximum
eigenmode beamforming (MEBF) corresponds to K = 1.

A. Performance Measures: Diversity gain and Diversity-
Multiplexing Tradeoff

At high SNR, the average symbol error probability (SEP),
denoted by Ps, can be approximated as Ps ≈ (gcSNR)−gd ,
where gc is the coding gain and gd is referred to as the
diversity gain [13]. The diversity gain gd(k) of kth eigen sub-
channel has been determined in [10] as

gd(k) = (m− k + 1)(n− k + 1), k = 1, . . . , n (3)

and was also shown that gd(k) does not improve with spatial
power allocation. With K active eigenmodes, the overall
diversity gain of SVDTR is gd = min

k=1,...,K
{gd(k)}. Diversity

gains of most of the advanced diagonal transceivers are same
as that of SVDTR [10].

The diversity-multiplexing tradeoff (DMT) [2] is a more
fundamental performance measure of a MIMO transceiver
in slow-fading scenario as it captures diversity gain and
multiplexing gain. A diversity gain d(r) is achieved at a
multiplexing gain r, if the data rate scales as R = r log SNR
b/s/Hz and the SEP is

Ps(r log SNR) .= SNR−d(r) (4)

where
.= denotes exponential equality [2]. Note that gd is the

diversity gain for fixed input data rate (i.e., gd = d(0)), and
to distiguish from d(r), it is referred to as classical diversity
gain [14] wherever necessary. The DMT for SVDTR has been
evaluated in [12]. We derive the DMT of CISM in section V.

III. CO-ORDINATE INTERLEAVED SPATIAL MULTIPLEXING

In this section, co-ordinate interleaved spatial multiplexing
(CISM) is described. The proposed scheme is based on co-
ordinate interleaving (CI), a technique which was originally
proposed to exploit the co-ordinate, or, component level di-
versity for single antenna transmission over Rayleigh fading
channels [15], [16]. The idea is to interleave the real and
imaginary parts of the complex symbols at the transmitter
such that they go through independently fading channels. For
CI to be effective, no two signal points in the signal set X
should have the same co-ordinate. This condition can be met
by rotating the standard M -QAM signal sets [15], [16]. In
the following, we assume that the signal sets {Xk}K

k=1 are
appropriately rotated. The effect of rotation angle and the
optimal angle of rotation are discussed in subsequent sections.

A. CISM Transceiver

• Interleave real and imaginary parts of {xk}K
k=1 (K ≤ n)

to obtain {x̃k}K
k=1, where,

x̃k = �xk + j�xK−(k−1) (5)

• Transmit s = VKPx̃, where x̃ = [x̃1 x̃2 . . . x̃K ]T

• Receive ỹ = Hs + n = HVKPx̃ + n
• Obtain r̃ = UH

K ỹ = ΛKPx̃ + w, where ΛK =
diag

({√λk}K
k=1

)
and w = UH

Kn.

⇒ r̃k =
√
λkpkx̃k + wk, k = 1, . . . ,K

• De-interleave r̃k to obtain rk :

rk = �r̃k + j�r̃K−(k−1), k = 1, . . . ,K (6)

⇒ rk =
√
λkpk�xk + j

√
λK−(k−1)pK−(k−1)�xk

+ �wk + j�wK−(k−1) (7)

• Estimate xk, k = 1, . . . ,K :

x̂k = arg min
xk∈Xk

∣∣∣rk −
(√

λkpk�xk

+j
√
λK−(k−1)pK−(k−1)�xk

)∣∣∣2 (8)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on July 17, 2009 at 02:07 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 6, JUNE 2009 2757

As can be seen from (7), the received signals gets decoupled
and hence can be decoded by single-symbol maximum likeli-
hood (ML) decoding. It is easy to verify that the received
signal power on the interleaved kth and (K − (k − 1))th

eigenmodes is the same and hence, Xk and XK−(k−1) are
assumed to be the same. Among the K eigenmodes used
for transmission, the two symbols transmitted on strongest
and weakest eigenmodes are interleaved and the two sym-
bols transmitted on second strongest and second weakest
eigenmodes are interleaved and so on. When K is an odd
number, symbols transmitted on

(
K+1

2

)th
eigenmode will not

get affected by the interleaving.

IV. DIVERSITY GAIN OF CISM

The error rate performance of CISM, in particular, the
diversity gain, is analyzed in this section. We consider uncoded
transmission over K ≤ n eigenmodes with1 pk = P/K, k =
1, . . . ,K, and assume Xk = XK−(k−1). MIMO channels
with rank(H) = 2 are considered in the foolowing and
rank(H) > 2 case is deferred to section V.

A. MIMO Channels with rank(H) = 2
Consider H ∈ CNr×Nt with n = min{Nt, Nr} = 2. When

{hij} are i.i.d and hij ∼ CN (0, 1), rank(H) = n = 2 with
probability one. For illustrative purpose, we consider 4-QAM
signaling and analysis for any M -QAM can be done in a
similar way.

Let X1 = X2 = X = {xA, xB, xC , xD} where xA =
ejθ(1

2+j 1
2 ), xB = ejθ(− 1

2+j 1
2 ), xC = −xA and xD = −xB .

Let P 4-QAM

s,k denote the SEP on kth eigenmode and P 4-QAM
s be

the average SEP, averaged over both the eigenmodes.
Result 1: P 4-QAM

s,1 = P 4-QAM
s,2 = P 4-QAM

s and

P 4-QAM
s ≤ Pr{xA → xB} + Pr{xA → xC} + Pr{xA → xD}

(9)
where

Pr{xA → xB} = Pr{xA → xD} =

m

2π

∫ π
2

0

1
(1 + SNR

8 sin2 t
cos2 θ)m+1(1 + SNR

8 sin2 t
sin2 θ)m−1

dt

+
m

2π

∫ π
2

0

1
(1 + SNR

8 sin2 t
cos2 θ)m−1(1 + SNR

8 sin2 t
sin2 θ)m+1

dt

− m− 1
π

∫ π
2

0

1
(1 + SNR

8 sin2 t
cos2 θ)m(1 + SNR

8 sin2 t
sin2 θ)m

dt

(10)

and

Pr{xA → xC} =

m

2π

∫ π
2

0

1
(1 + SNR

8 sin2 tψ1)m+1(1 + SNR
8 sin2 tψ2)m−1

dt

+
m

2π

∫ π
2

0

1
(1 + SNR

8 sin2 tψ1)m−1(1 + SNR
8 sin2 tψ2)m+1

dt

− m− 1
π

∫ π
2

0

1
(1 + SNR

8 sin2 tψ1)m(1 + SNR
8 sin2 tψ2)m

dt (11)

1As power allocation effects only the coding gain but not the diversity
gain [10], we consider uniform power allocation.

where ψ1 = 1 − sin 2θ and ψ2 = 1 + sin 2θ.
Proof: See Appendix A.
At high SNR, assuming sin 2θ �= 0 and | sin 2θ| �= 1,
the pairwise error probabilities (PEPs) given above can be
approximated as follows.

Pr{xA → xB} ≈ κCABSNR−2m (12)

where κ = 82mm
4

(
4m−1
4m

4m−3
4m−2 · · · 1

2

)
and

CAB =
1

(cos2 θ)m+1(sin2 θ)m−1
+

1
(cos2 θ)m−1(sin2 θ)m+1

− 2(m− 1)
m

1
(cos2 θ sin2 θ)m

(13)

Similarly,

Pr{xA → xC} ≈ κCADSNR−2m (14)

where

CAD =
1

ψm+1
1 ψm−1

2

+
1

ψm−1
1 ψm+1

2

−2(m− 1)
m

1
(ψ1ψ2)m

(15)

Hence, at high SNRs,

P 4-QAM
s ≤ κ(2CAB + CAD)SNR−2m (16)

θopt, the optimal rotation angle, is computed by maximizing
the coding gain (2CAB + CAD). For example, when m = 2,
θopt = 27.9o and for m = 4, θopt = 29.15o.
Ps,1 is lower bounded by the PEP corresponding to confus-

ing xA with its nearest neighbor.

Pr{xA → xB} < P 4-QAM
s,1 ≤

(
Union bound on P 4-QAM

s,1

)
From (12) and (14), we see that,

κCABSNR−2m < P 4-QAM
s,1 ≤ κ (CAB + CAC + CAD) SNR−2m

As both the upper bound and lower bound on P 4-QAM
s,1 have the

same SNR exponent, it follows that data transmitted on first
eigenmode has a diversity gain of 2m. By a similar argument,
we can show that P 4-QAM

s,2 decays as SNR−2m and hence
the overall diversity gain is 2m. SEP analysis for any M -
QAM can be carried out in a similar way to show that CISM
always achieves the maximum diversity gain 2m offered by
the channel when rank(H) = 2.

When the input symbols are from rotated BPSK, i.e., when
X1 = X2 = X = {ejθ,−ejθ}, we compute exact SEP without
resorting to union bound and is given below.

P BPSK
s,1 = P BPSK

s,2 = P BPSK
s =

m

2π

∫ π
2

0

1
(1 + SNR

4 sin2 t
cos2 θ)m+1(1 + SNR

4 sin2 t
sin2 θ)m−1

dt

+
m

2!π

∫ π
2

0

1
(1 + SNR

4 sin2 t
cos2 θ)m−1(1 + SNR

4 sin2 t
sin2 θ)m+1

dt

− m− 1
π

∫ π
2

0

1
(1 + SNR

4 sin2 t
cos2 θ)m(1 + SNR

4 sin2 t
sin2 θ)m

dt

(17)

Numerical evaluation of θopt results in θopt = 45o, ∀m ∈ N.
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V. DIVERSITY-MULTIPLEXING TRADEOFF OF CISM

In the following, we compute the SEP Ps,k when Rk, data
rate on kth eigenmode, scales with SNR as Rk = rk log SNR
b/s/Hz, rk ∈ [0, 1], and obtain the DMT of CISM.

Result 2: The symbol error probability of kth eigenmode at
a multiplexing gain of r is given by

Ps,k
.= SNR−gCISM

d (k)(1−rk) rk ∈ [0, 1] (18)

where

gCISM
d (k) = max{gd(k), gd(K − (k − 1))} (19)

and gd(k) = (m− k + 1)(n− k + 1).
Proof: See Appendix B.
The classical diversity gain of kth data stream can be obtained
by making rk = 0 in (18).

Remark 1: The (classical) diversity gain of kth data stream
in CISM is given by

gCISM
d (k) = (m− i+ 1)(n− i+ 1), k = 1, . . . ,K (20)

where i = min{k,K− (k−1)}. It follows from (3) and (19).
Note that gCISM

d (k) = gCISM
d (K − (k − 1)). Letting n = 2 and

K = 2, it can be noticed that remark 1 is consistent with
the results obtained in section IV. Remark 1 shows that, co-
ordinate interleaving two data streams transmitted over two
eigenmodes having different diversity gains would make the
diversity gain of both the streams equal to the diversity gain of
stronger eigenmode. Thus, CISM improves the diversity gains
of the weaker eigenmodes resulting in a significant gain in the
overall diversity, as shown by the following remark.

Remark 2: The overall (classical) diversity gain of CISM
with K ≤ n is given by

gCISM
d =

(
m−

⌊
K + 1

2

⌋
+ 1

)(
n−

⌊
K + 1

2

⌋
+ 1

)
(21)

SVDTR, as well as many advanced diagonal transceivers such
as those proposed in [8], have an overall diversity gain of gd =
(m−K+1)(n−K+1) [10]. Hence, for any choice of K, 1 <
K ≤ n, CISM results in a significantly higher diversity gain
than existing diagonal transceivers. When K = 1, both CISM
and SVDTR reduces to MEBF. Now, we proceed to determine
the DMT achieved by CISM.

When K = n = 2, Ps,1
.= SNR−2m(1−r1) and Ps,2

.=
SNR−2m(1−r2). Dividing the total input data rate R =
r log SNR, r ∈ [0, 2], equally between the two eigenmodes
results in the following.

Remark 3: Over rank 2 MIMO channels, CISM achieves
the DMT given by,

dCISM(r) = 2m(1 − r/2), r ∈ [0, 2] (22)

Fig. 1 shows the DMT for 4 × 2 MIMO channel. The
tradeoff for SVDTR (or, multiple beamforming), and MEBF
are derived in [12]. The figure also shows the optimal tradeoff
of the MIMO channel with coding across space and time
(“Optimal tradeoff”) and “space-only coding” without CSI at
the transmitter, derived in [2]. The UCD-VBLAST transceiver
achieves the optimal open-loop tradeoff [9] and hence, the
“Optimal tradeoff” curve also shows the DMT of UCD-
VBLAST. Note that CISM is space-only coding with CSI at
the transmitter.
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4 

5 

Fig. 1. Diversity-Multiplexing tradeoff comparisons of different schemes
over 4 × 2 MIMO channel.

When n > 2 and K > 2, CISM results in un-equal
diversity gains {gCISM

d (k)}K
k=1 and the overall diversity gain

is determined by min{gCISM
d (k)}K

k=1. With uniform rate allo-
cation (rk = r/K, k = 1, . . . ,K) across all the K active
eigenmodes,

dCISM(r) = gCISM
d (i)(1 − r/K), r ∈ [0, K] (23)

where i =
⌊

K+1
2

⌋
and gCISM

d (i) is given by (20). The tradeoff
can be improved by finding the optimal number of active
eigenmodes (K∗) for each input rate r, and by optimally
distributing the rate across the active modes. We note that,
a similar analysis has been reported in [12] for multiple
beamforming. Define GCISM

d (2k − 1) := gCISM
d (k) for k =

1, . . . , �n+1
2 � and GCISM

d (2k) := gCISM
d (k) for k = 1, . . . , �n

2 �
and GCISM

d (n + 1) := 0. Let D(K, r) = GCISM
d (1)(1 − r1) =

· · · = GCISM
d (K)(1 − rK), K ≤ n. We need to find K∗ =

max
K

D(K, r) subject to the constraint
∑K∗

k=1 rk = r. This

results in

K∗ = arg max
K

D(K, r) = arg max
K

(
K − r∑K

i=1 (1/GCISM
d (i))

)
(24)

with optimal rate allocation given by

rk = 1 − D(K∗, r)
GCISM

d (k)
, k = 1, . . . ,K∗ (25)

Connecting the points (r(k), d(k)), where

r(k) =

⎧⎪⎨
⎪⎩

0 k = 0

k −GCISM
d (k + 1)

(∑k
i=1 1/GCISM

d (i)
)

0 < k < n

n k = n
(26)

and

d(k) = GCISM
d (k + 1) k = 0, . . . , n (27)

gives the DMT curve. Transition points are obtained by
equating D(i, r(i)) = D(i+ 1, r(i)), i = 1, . . . , n− 1.
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Fig. 2. Diversity-Multiplexing tradeoff comparisons of different schemes
over 4 × 4 MIMO channel.

A. CISM with multi-dimensional signaling

Intrigued by (22), we investigate the DMT of CISM over
rank n MIMO channels when the input symbols are from
rotated n-dimensional QAM constellations. An n-dimensional
QAM signal set is obtained as the Cartesian product of n/2
two-dimensional QAM signal sets [16]. To send b bits in
n-dimensions, the n-dimensional constellation will have (at
least) 2b points. A symbol vector from a rotated n-dimensional
constellation is denoted by xk = vkΦ, xk ∈ R

n, where,
vk = (vk(1), . . . , vk(n)) ∈ Zn is the un-rotated n-dimensional
QAM symbol and Φ is a rotation matrix chosen such that
xk(i) �= xl(i), 1 ≤ k, l ≤ 2b, k �= l.

To achieve an overall input data rate of R = r log SNR
b/s/Hz, r ∈ [0, n], we choose two n-dimensional symbols
(say, x1 and x2) carrying R/2 bits each. The symbols are
interleaved to obtain x̃ ∈ Cn where

x̃i = x1(i) + jx2(i), i = 1, . . . , n (28)

The received vector r̃ = ΛPx̃+w is de-interleaved to obtain
r1 = �r̃ and r2 = �r̃ where

ri(j) =
√
λjpjxi(j) + wj , i = 1, 2; j = 1, . . . , n (29)

x̂i are obtained from ri through single (n-dimensional) symbol
ML decoding.

Result 3: DMT achieved by CISM over rank n MIMO
channels with input symbols from rotated n-dimensional con-
stellations is given by

d(r) = mn
(
1 − r

n

)
, r ∈ [0, n] (30)

Proof: See Appendix C.
Fig. 2 compares DMT achieved by different schemes over

4×4 MIMO channel. DMT of CISM with 2-dimensional sig-
naling is plotted according to (26) and (27) and it outperforms
SVDTR and MEBF. As shown by (30), DMT achieved by
CISM with 4-dimensional input symbols is a straight line
connecting the endpoints (0, 16) and (4, 0). Note that the
improved tradeoff with n-dimensional symbols is achieved at
the cost of higher decoding complexity.
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Fig. 3. Example 1: Symbol error probability of SVDTR and CISM
over 2 × 2 MIMO channel with BPSK signaling. Note that CISM Avg =
CISM Eigch1 = CISM Eigch2.

Result 3 may be interpreted as, in MIMO channels, it is
possible to achieve a linear DMT connecting the end points
(0,mn) and (n, 0) with space-only coding with perfect CSI
at both ends. CISM achieves this with appropriate signaling.

VI. SIMULATION RESULTS

This section reports SEP of the proposed CISM transceiver,
evaluated through Monte Carlo simulations. We consider
block-fading channel and uncoded data transmission over
K = n eigenmodes with pk = P/n, k = 1, . . . , n and P = 1.

Example 1: For Nt = 2 and Nr = 2, the SEP of
SVDTR and CISM is plotted in Fig. 3. Data symbols are
drawn from BPSK constellation rotated by θopt = 450.
“SVDTR Eigchk” and “CISM Eigchk” refers to kth eigen sub-
channel of SVDTR and CISM, respectively. “SVDTR Avg”
and “CISM Avg” denote the overall SEP of SVDTR and
CISM, respectively. In SVDTR, as shown in [10], the second
eigenmode drastically degrades the overall SEP. In CISM,
both the eigenmodes have equal SEP with 4th order diversity.
Analytical SEP, plotted by evaluating (17) with m = 2,
matches exactly with the simulation results.

Example 2: Consider CISM over 2 × 2 MIMO channel
with data symbols from 4-QAM constellation rotated by
θopt = 27.9o. Note that θopt is different from 31.7175o which is
the optimal rotation angle when both the channels are Rayleigh
fading channels with unit diversity gain [17]. Fig. 4 compares
the SEP obtained through simulations with the union bound
given by (9). It also shows the SEP of UCD-VBLAST which
involves unitary precoding along with optimal power alloca-
tion [9]. Both UCD-VBLAST and CISM achieve maximum
diversity gain of 4 but CISM (with uniform power allocation)
has slightly lower coding gain. “CISM+PL” denotes CISM
with power allocation given by pk = 2P

K
λk

λk+λK−(k−1)
, k =

1, . . . ,K . It can be verified that this power allocation results
in higher received SNR compared to uniform power allocation.
The power allocation given above is a heuristic one and
determining the optimal power allocation will be considered
in the future work. Further, since the DMT of UCD-VBLAST
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Fig. 4. Example 2: Symbol error probability of SVDTR and CISM over
2 × 2 MIMO channel with 4-QAM signaling. Note that CISM Avg=CISM
Eigch1 =CISM Eigch2.

0 5 10 15 20 25 30

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

S
ym

bo
l E

rr
or

 P
ro

ba
bi

lit
y

 

 

SVDTR Eigch1
SVDTR Eigch2
SVDTR Eigch3
CISM Eigch1
CISM Eigch2
CISM Eigch3
CISM Avg. with 3−dim. signaling

Fig. 5. Example 3: Symbol error probability of SVDTR and CISM over
4×3 MIMO channel with 4-QAM signaling. Note that SVDTR Eigch2=CISM
Eigch2 and CISM Eigch1=CISM Eigch3.

is same as that of optimal tradeoff without CSI at the trans-
mitter, CISM achieves a higher d(r) than UCD-VBLAST for
0 < r < n (cf. Fig. 1).

Example 3: Fig. 5 shows SEP of CISM over 4 × 3 MIMO
channel with input symbols from 4-QAM constellation rotated
by 27o. Co-ordinates of the symbols transmitted on first and
third eigenmodes are interleaved and hence, they have the
same SEP. CISM Eigch1 and CISM Eigch3 are parallel to
SVDTR Eigch1 showing that gCISM

d (1) = gCISM
d (3) = gd(1) =

12. This justifies remark 1. As the data stream transmitted
on second eigenmode does not get effected by interleaving,
it has same SEP as SVDTR Eigch2. Hence, CISM with 2-
dimensional signaling achieves an overall diversity of gCISM

d =
gd(2) = 6. “CISM Avg. with 3-dim. signaling” shows the
average SEP of CISM when input symbols are from rotated
3-dimensional QAM constellation. As can be seen, SEP of 3-
dimensional signaling has the same slope as that of SVDTR
Eigch1 and achieves the maximum diversity gain of 12.

VII. CONCLUSIONS

With perfect CSI at both ends of the link, a MIMO
channel can be diagonalized and multiple data streams can
be sent in parallel on the resulting eigenmodes. In most of
the linear diagonal transceivers proposed to date, the weaker
eigenmodes having low diversity gains drastically degrade
the overall error rate performance. This paper proposed a
novel transceiver, referred to as co-ordinate interleaved spatial
multiplexing (CISM), that improves the diversity gains of the
weaker eigenmodes. CISM diagonalizes the channel through
SVD and interleaves the co-ordinates of the input symbols
(from rotated QAM constellations) transmitted on strong and
weak eigenmodes.

By computing the upper bound and lower bound on symbol
error probability of the eigen sub-channels, the diversity
gains of CISM have been determined. The analytical results,
supported by simulation results, show that CISM achieves
significantly higher overall diversity gain by improving the
diversity of weaker eigenmodes. The diversity-multiplexing
tradeoff analysis shows that, CISM achieves higher diversity
gain at all multiplexing gains compared to the existing diag-
onal transceivers.

APPENDIX A
SEP OF 4-QAM OVER RAYLEIGH MIMO CHANNELS

(RANK(H) = 2)
The joint pdf of the unordered eigenvalues of W is [18]

f(λ1, λ2) = (2!Km,2)−1e−(λ1+λ2)(
λm

1 λ
m−2
2 + λm−2

1 λm
2 − 2λm−1

1 λm−1
2

)
(31)

where Km,2 = (m− 1)!(m− 2)! is the normalizing constant.
Union bound on P 4-QAM

s,1 is given by

P 4-QAM
s,1 ≤ Pr{xA → xB} + Pr{xA → xC} + Pr{xA → xD}

(32)

Pr{xA → xB |λ1, λ2} = Q

( |uA − uB|
2σ

)
(33)

where uA =
√
λ1p1�xA +j

√
λ2p2�xA, uB =

√
λ1p1�xB +

j
√
λ2p2�xB and Q(·) is the Gaussian Q-function. Substitut-

ing p1 = p2 = P/2 (uniform power allocation),

Pr{xA → xB} = Eλ1,λ2

⎡
⎣Q

⎛
⎝
√
P (λ1 cos2 θ + λ2 sin2 θ)

4σ2

⎞
⎠
⎤
⎦

(34)
Using alternative form of Gaussian Q-function [19] given by

Q(x) = 1
π

∫ π
2

0
e

−x2

2 sin2 t dt, along with (31) and by recalling that
P/σ2 = SNR, (34) can be evaluated to obtain (10). Due to
symmetry, Pr{xA → xD} = Pr{xA → xB}.

Pr{xA → xC} = Eλ1,λ2

[
Q

(√
P (λ1ψ1 + λ2ψ2)

4σ2

)]
(35)

where ψ1 = 1 − sin 2θ and ψ2 = 1 + sin 2θ. Pr{xA → xC}
can be evaluated, similar to Pr{xA → xB}, to get (11).
Union bound on P 4-QAM

s,1 can be computed by substituting (10)
and (11) in (32). In a similar way, the union bound on P 4-QAM

s,2

can be computed to show that it is equal to the union bound
on P 4-QAM

s,1 . This proves result 1.
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APPENDIX B
SEP OF kth EIGENMODE WHEN Rk = rk log SNR B/S/HZ

Let the input symbols are from a rotated QAM signal set
whose size increases with SNR to satisfy Rk = rk log SNR
b/s/Hz. Assuming symbol xl is transmitted, at high SNRs,

Pr
{
xl → xη(l)

}
< Pr{error|xl sent} ≤

∑
xi∈Xl

Pr {xl → xi}
(36)

where xη(l) is a nearest neighbor to xl and Xl ⊂ ejθX is the
set of nearest neighbors to xl.

Pr{xl → xi|λk, λK−(k−1)} = Q

( |ul − ui|
2σ

)
(37)

where ul =
√
λkpk�xl + j

√
λK−(k−1)pK−(k−1)�xl, and

ui =
√
λkpk�xi + j

√
λK−(k−1)pK−(k−1)�xi. To evaluate

Pr{xl → xi}, we need f(λk, λK−(k−1)), the joint pdf of kth

and (K − (k− 1))th ordered eigenvalues of W. For a central
Wishart matrix W, only the joint pdf of all its eigenvalues is
known2 [18]. Hence, we make use of two results from [10]
and [13] to evaluate Pr{xl → xi}. As the symbols are from a
rotated QAM constellation ejθXk,

�xl = al cos θ − bl sin θ
�xl = al sin θ + bl cos θ

(38)

where al + jbl ∈ Xk (un-rotated QAM constellation) and θ
is chosen such that �xl �= �xi and �xl �= �xi, ∀xl, xi ∈
ejθXk, l �= i. With uniform power allocation and using (38),

|ul − ui| =
[
P

K

(
λk (cos θ(al − ai) − sin θ(bl − bi))

2

+λK−(k−1) (cos θ(bl − bi) + sin θ(al − ai))
2
)] 1

2
(39)

Consider (al − ai) and (bl − bi). While transmitting at Rk

b/s/Hz, there are 2Rk points in the QAM constellation and,
in each of the real and imaginary dimensions, there are 2

Rk
2

points. Distance between two adjacent points is 1/2
Rk
2 (recall

that Xk has unit energy). Assuming that xl and xi are dli
re and

dli
im symbols apart along the real and imaginary dimension,

respectively, (al−ai) is of the order of dli
re/2

Rk
2 and (bl−bi)

is of the order of dli
im/2

Rk
2 [14].

Without loss of generality, assume k < K − (k − 1),
which implies 0 < λK−(k−1) ≤ λk. We bound |ul − ui|
as,

√
λk2−Rkc1P/K < |ul − ui| ≤

√
λk2−Rkc2P/K where

c1 = cos2 θ(dli
re)

2 + sin2 θ(dli
im)2 − 2 cos θ sin θdli

red
li
im and

c2 = (dli
re)

2 + (dli
im)2. Using the bounds on |ul − ui| and

noting that Rk = rk log SNR and P/σ2 = SNR, we get

Eλk

⎡
⎣Q

⎛
⎝
√
λkSNR(1−rk)c2

4K

⎞
⎠
⎤
⎦ ≤ Pr{xl → xi} <

Eλk

⎡
⎣Q

⎛
⎝
√
λkSNR(1−rk)c1

4K

⎞
⎠
⎤
⎦ (40)

2When n = 2 and K = 2, f(λ1, λ2) is the joint pdf of all eigenvalues of
W and Ps,k, k = 1, 2, can be obtained directly by taking expectation over
f(λ1, λ2) as done in appendix A.

Bounds on Ps,k depend only on f(λk). First order expansion
of f(λk), derived in [10], is given by

f(λk) = akλ
dk

k + o
(
λdk

k

)
k = 1, . . . , n (41)

where
dk = (m− k + 1)(n− k + 1) − 1 (42)

(see Thm. 1 in [10] for ak. It has no effect on diversity gain.)
Using (41) in (40) and using proposition 1 from [13], we

get P LB
li ≤ Pr{xl → xi} ≤ PUB

li , where

P LB
li = C

(
c2
4K SNR1−rk

)−(dk+1)
+ o

((
SNR1−rk

)−(dk+1)
)

PUB
li = C

(
c1
4K SNR1−rk

)−(dk+1)
+ o

((
SNR1−rk

)−(dk+1)
)

Since both the upper bound and lower bound on Pr{xl → xi}
have the same SNR exponent,

Pr{xl → xi} = Ck
li SNR−(dk+1)(1−rk) (43)

where Ck
li is the coding gain. It is easy to show that every

PEP has the same SNR exponent. Thus, both the union
bound and the lower bound on Pr{error|xl sent} in (36)
decays as SNR−(dk+1)(1−rk). Hence, Pr{error|xl sent} =
Ck

l SNR−(dk+1)(1−rk) and,

Ps,k =
2Rk∑
l=1

Pr{error|xl sent} · Pr{xl sent}
.=SNR−(dk+1)(1−rk) (44)

where
.= is the exponential equality [2]. Similarly,

Ps,K−(k−1)
.= SNR−(dk+1)(1−rK−(k−1)) (45)

when RK−(k−1) = rK−(k−1) log SNR b/s/Hz. As Ps,k =
Ps,K−(k−1), Rk can be made equal to RK−(k−1). From (42)
and (3), dk + 1 = gd(k). Hence, result 2 is proved.

APPENDIX C
PROOF OF RESULT 3

Let xi and xk are the two n-dimensional symbols transmit-
ted at a given time. First we find Pr{x̂i �= xi}.

Pr{xi → xj |λ = (λ1, . . . , λn)} = Q

( |ui − uj |
2σ

)

where |ui − uj | =
√∑n

l=1 plλl(xi(l) − xj(l))2. Note that
xi(l) =

∑n
t=1 φltvi(t) and xj(l) =

∑n
t=1 φltvj(t) and hence

(xi(l) − xj(l))2 =
n∑

t=1

φ2
lt(vi(t) − vj(t))2

To meet a total input data rate of R = r log SNR b/s/Hz/,
r ≤ n, the symbols xi and xk should carry R/2 bits each,
and hence, the n-dimensional constellation will have 2R/2

points, with 2R/2n points in each dimension. The distance
between adjacent points is 2−R/2n = SNR−r/2n. Let vi and
vj are dij

t symbols apart along tth dimension, so that (vi(t)−
vj(t))2 = (dij

t )2SNR−r/n. This implies, (xi(l) − xj(l))2 =∑n
t=1 φ

2
lt(d

ij
t )2SNR−r/n. With pl = P/n, l = 1 . . . , n,

Pr{xi → xj} = Eλ

⎡
⎣Q

⎛
⎝
√∑n

l=1 λlξlSNR1−r/n

4n

⎞
⎠
⎤
⎦ (46)
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where ξl =
∑n

t=1 φ
2
lt(d

ij
t )2 and ξl > 0. As

λ1ξ1SNR1−r/n <

n∑
l=1

λlξlSNR1−r/n ≤ λ1SNR1−r/n
n∑

l=1

ξl

Pr{xi → xj} can be bounded as

Eλ1

⎡
⎣Q

⎛
⎝
√
λ1SNR1−r/n ∑n

l=1 ξl
4n

⎞
⎠
⎤
⎦ ≤ Pr{xi → xj} <

Eλ1

⎡
⎣Q

⎛
⎝
√
λ1ξ1SNR1−r/n

4n

⎞
⎠
⎤
⎦ (47)

(47) is similar to (40) and can be evaluated using (41),
(42) and proposition 1 from [13] to show that Pr{xi →
xj} = Cij SNR−(d1+1)(1−r/n). This results in Pr{x̂i �=
xi} .= SNR−(d1+1)(1−r/n). Similarly, it can be shown that
Pr{x̂j �= xj} .= SNR−(d1+1)(1−r/n) and hence, overall SEP
with n-dimensional signaling over n eigenmodes is given by

Ps
.= SNR−(d1+1)(1−r/n), r ∈ [0, n] (48)

Noticing that d1 + 1 = mn completes the proof.
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